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ABSTRACT 

It is proved that the Alexander modules determine the stable type of a knot up 
to finite ambiguity. The proof uses a new existence theorem of minimal Seffert 
surfaces for multidimensional knots of codimension two. 

Introduction 

In 1930 F. Frankl and L. Pontryagin [FP] proved that any polygonal simple 
closed curve in three-dimensional space spans an orientable nonsingular 
surface in R 3. This statement served as the starting point for Seifert's paper [S], 
released three years later, which created a new method of studying algebraic 
invariants of classical links. Seifert's idea was to use the information, derived 
from the imbedding in R a of the surface spanned by the link, to compute link 
invariants, such as homology of the cyclic coverings. This made it possible to 
apply homology methods in knot theory and, in particular, to explain the 
homological meaning of many knot invariants known at that time. 

Seffert's method proved to be extraordinarily useful in multidimensional 
knot theory as well. In 1965-1966 M. A. Kervaire [K4], E. C. Zeeman [Z] and 
J. P. Levine [L1] showed that any (smooth) n-dimensional knot k n c S n+2 
spans an orientable (n + 1)-dimensional submanifold V~+Ic S ~+2, called a 
Seifert manifold. The embedded surgery technique and the study of the 
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homology pairing, determined by linking numbers of cycles of V (the Seifert 
pairing), were the main tools used to solve a number of fundamental problems 
of mutlidimensional knot theory. In this way the unknotting criterion [LI ], the 
concordance classification of knots [L3] and the ambient isotopy classification 
of simple knots [L4], [F3] were obtained. 

The method used in the papers mentioned above consisted, essentially, in 
the transformation of the Seifert manifold Vinside S n +2 in order to get another 
Seifert manifold, having "simpler" homology structure. It is natural to ask if 
there exist "simplest" or "minimal" Seifert manifolds? For the case ofa  fibred 
knot the answer to this question is clear: a minimal Seffert manifold should be 
the fibre of the corresponding fibering. 

The present paper studies minimal Seifert manifolds of general multidimen= 
sional knots. The formal definition of minimality is given in 2.4; it is 
equivalent to the requirement that the inclusion ofint Vinto the infinite cyclic 
covering .~ induces a monomorphism in homology. This means the absence of 
"superfluous" homology classes in V: any class in the kernel of H. V---)H..~ 
could potentially be killed by surgery, and thus Vcan be made "smaller'. One 
of the main theorems of the present paper (Theorem 2.3) states that any knot 
(S ~+2, k") with 7tl(S ~+2 -- k) = Z, n >_- 4, has a minimal Seifert manifold V, 
and this V can be constructed to realize any previously given sequence of 
lattices in the Alexander modules. In other words, the homology structure of a 
minimal V might be, to some extent, arbitrary; the only requirement is that it 
should be compatible with the Alexander modules. This statement is a far- 
reaching generalization of the well-known Levine's theorem [L], which 
provides r-connected Seifert manifolds. Another slightly more general state= 
ment, which also follows from our Theorem 2.3, yields the following lacunary 
principle: if the Alexander modules vanish in certain dimensions i~ </2 < 
• . .  < it, then the knot admits a Seifert manifold without homology in 
dimensions il < i2 < • . .  < il (cf. Corollary 2.7). 

As the first application of the minimal Seifert manifolds theorem, I give here 
a very short proof of the Trotter-Kearton theorem [Tr], [K3], saying that 
simple odd=dimensional knots are equivalent if and only if they have con- 
gruent Milnor forms. The second application is the knot finiteness theorem, 
proved in Section 3. This theorem states that, modulo finiteness, the 
stable type of a knot is determined by the Alexander modules up to the 
middle dimension. A particular case of this statement was proved by 
Haussmann [H1]. 

Theorem 2.3 on minimal Seifert manifolds is deduced in the paper from a 
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certain general realization theorem for codimension-one submanifolds. As is 
well known, any one-dimensional integer cohomology class can be realized by 
a submanifold with trivial normal bundle [Th]. The question considered in 
Section 1 of this paper is if it is possible to construct the minimal realizing 
submanifold and describe the whole variety of such minimal submanifolds. 
The answer is given by Theorem 1.5: minimal submanifolds correspond to 
sequences of lattices in the homology modules of the covering space. This 
statement.constitutes, essentially, the main geometric part of the proof IF6] of 
exactness of the Novikov inequalities IN 1], [N2], estimating the number of 
critical points of a map into the circle. Theorem 1.5 (or the theorem of [F6]) 
easily implies the theorem of Browder and Levine [BL] on fiberings over S ~. 

An earlier version of the results of this paper was announced in the brief 
note [F5]. 

In the sequel the exposition is organized as follows. The realization theorem 
for codimension one submanifolds and its proof are given in Section 1; proofs 
of some lemmas, used here, are placed in a separate Section 5 at the end of the 
article. Section 2 gives the conceptual background and the formulation of the 
theorem on minimal Seifert manifolds; here we also deduce some of its easy 
corollaries. Section 3 is devoted to the applications: the Kearton-Trotter and 
the knot finiteness theorem are proved here. The following Section 4 contains 
auxiliary algebraic material used in the proof of Theorem 2.3; here the proof of 
this theorem is also given. Among the results of this section I will mention a 
new simple construction of the Milnor pairing, cf. [M]. 

We work in the smootli category. 
I would like to thank Eva Bayer-Fluckiger for useful discussions. 

§1. Realization theorem for codimension one submanifolds 

In this section we will formulate a realization theorem for codimension 
one submanifolds. The proof uses several lemmas, which will be proved in 
Section 5. 

1.1. Modules Defined by a Codimension One Submanifold. Let M n be a 
compact connected manifold and (V ~-~, v) its framed proper smooth sub- 
manifold. Let us cut M along V ~- ~ ([BL], 2.2); as a result we get a compact 
manifold Y (with comers), in whose boundary two disjoint (n - 1)-dimen- 
sional submanifolds V0, VI c OY are distinguished, and a quotient mapping 
¥ :  Y ~ M with the following properties: 

(1) for m E M - V the preimage ~ -  ~(m) consists of one point; 



182 M. FARBER Isr. J. Math. 

(2) for m ~ Vthe preimage ~u-I(m) consists of two points, one belonging to 

V0 and the other to I"1, and 
(3) ¥ maps V0 and VI homeomorphically onto V. 
We shall assume that notations V0 and V1 are chosen so that the vector field 

on 110 corresponding to v under ~u is directed into Y. 
Let a manifold X = X(V, v) be obtained from Y × N (where N is the set of 

natural numbers with the discrete topology) by identifying points (vl, m) with 
(Vo, m + 1) where m ~ N ,  v~ E VI, v0E V0 and ~u(vl) = ~u(v0). We denote by 
q : X ~ M the unique projection mapping the class of a point (y,  m ) E  Y × N 
into ~(y).  The correspondence (y, m ) ~ ( y ,  m + 1) defines a continuous 
mapping X ~ X which we shall denote by t. The group H.(X) becomes a A+- 
module, where A+ = Z[t], if one puts tx = t.(x) for x EH.(X). In this way a 
sequence of A+-modules Ai(V, v) = Hi(X(V, v)), i = 0, 1 . . . .  , is defined. 

1.2. Modules Defined by a Cohomology Class. Let ~ H I ( M ;  Z) be an 
indivisible cohomology class. Consider the covering Pc : Me ~ M correspond- 
ing to a subgroup in n~(M) consisting of  classes of loops a for which ( ~, a) = 0. 
The group of covering transformations of this covering is an infinite cyclic 
group. Its generator t : M~ ~ Me can be fixed by requiring that for x ~ M e and 
for any path to in Me joining x with tx, the value of  the class ~on the homology 
class of the loop [p . to ]Enl (M)  be equal + 1. The homology H.(M¢) are 
A-modules, where A -- Z[t, t-1] 

1.3. The Embedding It: X(V, v)---,M¢. Suppose that in the situation of 
Subsection 1.1 it is known that the manifold 1I"-1 is connected and that the 
cohomology class ~--O(V, v)EH~(M;Z), which is realized by the sub- 
manifold (V, v), is nonzero. 

Then the class ~ is indivisible (and therefore the arguments of the previous 

subsection are applicable to it). 
From the theory of covering spaces it easily follows that the map 

q : X(V, v ) ~ M ,  defined is 1.1, admits a lifting/t : X(V, v)~M¢, which is an 

equivariant imbedding. 

1.4. Let k c K be two neotherian tings, and A be a finitely generated 
K-module. A k-submodule S c A is called a k-lattice if it is finitely generated 
(over k) and generates the module A over the ring K. 

Let us consider the map g , :A i (V ,  v)-~Hi(Me), which is induced by the 
m a p g :  X(V, v)~M¢ from Subsection 1.3. It is easy to see that ~ ,  is a 
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A+-homomorphism and that Bi(V, v)=image(g.)  is a A+-lattice of the 
A-module Hi(M,). 

1.5. THEOREM (The Realization Theorem). Let n > 6, M n be a compact 
connected manifold with 7hM -- Z,  and ~ EH~(M; Z) be a generator. Let us 
suppose that a fiamed smooth compact submanifold (F n-l, Vo) in 03,1 is given 
and for each i = 2, 3 , . . . ,  n - 3 in the module Hi(M,) some A+-lattice Ci is 
distinguished. It is assumed that the following conditions are satisfied: 
(a) ~ lau -- O(F, v0); Co) there exists a smooth fibering g : OM--, S ~, realizing the 
class ~ I aM, such that for some point s E S we have g-  ~(s) = F. Then there exists 
a compact simply connected smooth framedproper submanifold (V"-~, v) in M 

such that: 
(I) O(V, v) = ~; 

(II) OV ---- F, v IF -- v0; 
for each i = 2, 3 . . . .  , n - 3 the following conditions hold: 

(IIIi) the homomorphism # .  : Ai(V, v )~Hi(M,)  is a monomorphism; 
(IVj) Bi(V, v) -- t',CJor some integer ai E Z .  

The proof (see 1.9 below) will be obtained by constructing a process of 
improving manifold (V, v), based on the following lemmas. 

1.6. LEMMA. Suppose that under the conditions of  Theorem 1.5 for some 
integer k, 2 < k < n - 3, we have constructed a compact, simply connected, 
smooth, framed, proper, submanifold (V ~-~, v) in M which satisfies the con- 
ditions (I), (II) and also conditions (IIIi) and (IV/)for all i < k. Then there exists 
a framed submanifold (W "-~, oJ) c M", which satisfies condition (IIIk) in 
addition to the above conditions and moreover Bk ( W, o~ ) = t~,Bk ( V, v ) for some 
integer ak. 

1.7. LEMMA. Suppose that under the assumptions of  Theorem 1.S for some 
integer k, 2 < k <-_ n - 3, we have constructed a compact, simply connected, 
smooth framed, proper, submanifold (V"-t ,v)  in M, satisfying (in the 
notations of  the Theorem 1.5) conditions (I), (II), (III~)for all i < k, and the 
conditions (IVi) for all i < k - 1. Suppose also that tBk(V, v) C Ci C BK(V, v) 
and the factor group Ck/ tBk( V, V) is cyclic. Then there exists a framed submani- 
fold ( W "-l,  o~ ) c M", which, besides the conditions listed above, satisfies also 
condition (IVk). 

In the proof of Theorem 1.5 we shall also use the following purely algebraic 
lemma. 
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1.8. LEMMA. Let H be a finitely generated A-module and let B,  C c H be 
two o f  its A+-lattices. Then there exist an integer ot > 0 and a sequence o f  

A+-lattices .4o, Ai . . . . .  A ~ C H ,  such that A o = B ,  AN-- t~C,  for i = 
O, l, 2 . . . . .  N - 1 the following inclusions hold: tA~ CAt+, c Ai and the factor 
groups A~ + i/tA~ are cyclic. 

1.9. PROOF OF Tn~ORV.M 1.5. Using the Pontryagin-Thom construction, 
one may construct a proper, framed submanifold (V "-l, v ) c  AP, satisfying 
conditions (I) and (II) of Theorem 1.5 (see [BL], 2.1). As shown in Subsections 
3.1 and 3.2 of [BL], under the conditions of Theorem 1.5 there exists a 
submanifold (V "-1, v) which, besides the above listed conditions, is simply 
connected (and, in particular, connected). This simply connected submanifold 
will serve as the beginning of the inductive process. 

By Lemma 1.6, we may assume that condition (III2) is also satisfied. By 
Lemma 1.7 (combined with Lemma 1.8) we may suppose that condition (IV2) 
is also satisfied. Then we may apply Lemma 1.6 again to get conditions (I), (II), 
(III2), (III3), and (IV2) and, applying Lemmas 1.7 and 1.8, we shall get a simply 
connected, proper, framed submanifold of M", satisfying conditions (I), (II), 
(III2), (IIIa), (IV2), (IV3). Continuing this construction, we get the desired 
submanifold (V"-l, v). 

This completes the proof. Lemmas 1.6, 1.7, 1.8 will be proved in §5. 

§2. Minimal Seifert manifolds 

Here we apply the realization Theorem 1.5 to the problem of constructing 
minimal Seifert surfaces for multidimensional knots. 

Before giving the statement of the theorem we recall some definitions and 
known facts on the relationship between Alexander modules and the homology 
of Seifert manifolds. 

2.1. An n-dimensional knot is a pair (S" +2, k") consisting of the sphere 
S" +2 and of an n-dimensional closed oriented submanifold k of it that is 
homcomorphic (but not necessarily diffeomorphic) to the n-dimensional 
sphere S". A Seifert manifold of a knot (S "+2, k") is any compact connected 
orientablc (n + 1)-dimensional submanifold V c S n +2 with OV ffi k. 

Let K - - ( S  "+2, k") be an n-dimensional knot and X - - S  n+2-  k is its 
complement. The universal abelian cover p : X-} X is the covering projection 
corresponding to the commutator subgroup of ~t~(X). The group of covering 
transformations of p is the Abelianized group 7t/[lt, l t ] - -H~X.  By the 
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Alexander duality theorem, Hi X - - Z ;  hence, the cover p : . ~  ~ X  has an 
infinite cyclic group of covering transformations. The orientations of  S" + 2 and 

k determine a generator t : . ~ . ~  of  this group, t acts on homology H , X ,  

making it into modules over the ring A = Z[t, t -  l]. The module Hi.~ is called 

the/-dimensional Alexander module of K; we will denote it by A~(K). 
Kervaire [K4] has proved that the Alexander modules have the following 

property: multiplication by 1 - t E A is an automorphism of  At(K). Using this 

fact one can provide A~(K) with a P = Z[z]-module structure by putting 
za = (1 - t) - l a  for a ~Hi(-~). A P-submodule S c A,(K) is called P-lattice if 

it is finitely generated over P and generate As(K) over A. 

For n odd, n = 2q - 1, the Milnor form [M2] 

[ , ] : Aq(K) X Aq(K) ~ Q 

is defined. If S cAq(K) is a lattice, then S* = {a~Aq(K); [ a , x ] E Z }  is 

also a lattice (cf. Section 4) which is called the dual of  S. A lattice S is self, 

dual iff S = S*. 
Any Seifert manifold VofKhas  a natural P-module structure on H,(V)  (see 

[K5], [F3, pp. 66-68]). The inclusion int V--- X may be lifted to )C and any 

such lifting f :  int V ~  )C gives a map 

f , : H ,  V-*A,(K). 

2.2. It was proved in IF3, pp. 76-80, 91-92] that ( 1 ) f .  is a P- 

homomorphism; (2) its image is a P-lattice in A~(K); (3) the kernel o f f .  consists 

of  all elements vCH~ V with (zX)mv = 0 for some m > 0 (here 2 means 

1 - z EP);  (4) if n is odd, n = 2q - 1, then the middle dimensional P-lattice 

im [f .  : Hq V~Aq(V)] c Aq(K) is self-dual. 
The following theorem is the main result of  this section. 

2.3. THEOREM. Let K=(Sn+2, k n) be an n-dimensional knot with 
7tI(S "+z - k) = Z, n > 4. Assume that for any r = 2 . . . .  , q = [(n + 1)/2] a 
P-lattice Sr CAr(K) is distinguished; in the case of  odd n it is required that 
the middle-dimensional lattice Sq c Aq(K) is self-dual. Then there exists a 
simply-connected Seifert manifold V T M  c S "+2 of the knot K such that for all 
r = 2 , . . . ,  q the P-module Hr(V) is isomorphic to &. Moreover, in the case of  
odd n there exists an isomorphism (oq : Hq(V)~  Sq with the property: 

 ,(vgl = (v,,  v2). 

Here [ , ] denotes the Milnor form and ( , ) means the intersection number 

pairing on V. 
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The proof  of  this theorem will be given in 4.11. 

Now we would like to formulate some of  its corollaries. 

A P-module  B will be called minimal if  the multiplication by z2 ~ P  is a 
monomorph i sm B ~ B. 

2.4. LEMMA. Let V T M  C S ~+2 be a Seifert manifold o f  a knot. The follow- 
ing conditions are equivalent: 

(a) the P-modules Hr(V) are minimal for all r = 1, 2 , . . . ,  n; 
(b) the P-modules Hr(V) are minimal for all r = 1, 2 . . . . .  q = [(n + 1)/2]; 

(c) the maps i +, i_ : V --, S n + 2 _ V, which are small shifts in the directions o] 

positive and negative normal vector fields, respectively, induce monomor- 
phisms in homology; 

(d) the maps f , :  Hr(V)--'Ar(K), defined in 2.1, are monomorphisms for all 
r =  1 , . . . , n ;  

(e) the multiplication by z E P  is a monomorphism H r V ~ H ~ V  for all 
r =  1 , 2 , . . . , n .  

The p roof  of  the lemma will be given in 2.8. Seifert manifolds having one of  

the equivalent  properties (a)-(e) will be called minimal.  

2.5. COROLLARY. Any n-dimensional knot, n > 4, having group Z, admits 
a minimal Seifert manifold. 

This automatically follows f rom Theorem 2.3, since the P-modules  S~, 

r = 1 . . . . .  q, being submodules of  the Alexander modules, are minimal and so 
HAV) are minimal  for r = 2 . . . .  , q. 

As another corollary of  Theorem 2.3 we obtain the following known result: 

2.6. COROLLARY (Levine [L1]). Any n-dimensional knot K - - ( S  n+2, k ~) 

with n~(S k+2 - k ") = rri(S I) for i < r, n > 4, admits an r-connected Seifert 

manifold. 

In this case the Alexander modules Ai(K) with i -- l, 2 , . . . ,  r vanish. 

The next statement is slightly more  general. 

2.7. COROLLARY. Assume that an n-dimensional knot K = (S" +2, k~), n > 

4, having group Z, has the following lacunary property:for some set o f  numbers 
il < i2 < " . .  < it < q = [(n + 1)/2] the Alexander modules vanish: A~,(K) = 0 

for s = 1 . . . . .  l. Then the knot admits a Seifert surface V with Hi, (10 = 0 for 
s = l , 2 , . . . , l .  

It follows easily from 2.5. 
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2.8. PROOF OF LEMMA 2.4. The equivalence ( a ) ~  (c) follows easily from 
the relations 

i+ = (i+ - i_) o z, - i_ = (i+ - i_) o 

(of. [F3], pp. 67-68) and the fact that i+ - i_ is a stable homotopy equivalence. 
The equivalence ( a ) ~  (d) follows from [F3], Proposition 2.2. 
To prove that (a)¢* (b), we consider two pairings: 

( , ) : H r ( V ) X H n + , - r ( V ) - " Z ,  

{ , } : T r (V)  X Tn_r(V)---- 'Q/Z.  

The first is the intersection form, and the second is the linking form. T~ 
means the Z-torsion subgroup of Hr. We will use the following properties of 
( , ) a n d { ,  }: 

(1) (z~.a, b) = (a, z~.b) for a ~H,(V) ,  b EH.+1_r(V); 
(2) {zza, b} = {a, z~.b} for a ~ Tr(V), b E T._r(V); 
(3) i f a  EH, (V)  and (a,  b) = 0 for all b ~ H , + I _ , ( V )  then a ~ T,(V); 
(4) i f a  E T.(V) and {a, b} = 0 for all b E T._,(V) then a = 0. 
Properties (3) and (4) are well-known, (1) follows from Proposition 1.2 of 

[F3], and (2) may be proved similarly. 
Now suppose that V" ÷ ~ is a Seifert manifold with P- modules H,(V) minimal 

for r = 1 . . . . .  q = [(n + 1)/2]. Suppose a E H ~ ( V )  with zea = O, s > q. Then 
for any b E /4 .  + ~_~ (V), because of  the minimality of H.  + ~ _ ~ (V), there is N > 0 
with Nb -- z~.b, for some b, ~-H,+~_s(V). Thus, 

1 1 
(a, b)  = -:- (a,  Nb)  = -:- (a, z~.bl) 

N IV 

1 
ffi - -  ( z ~ a ,  b l  ) = 0 

N 

and so a E T~(V). Similarly, for any c ~ T._~(V), because of  the minimality of 
H._~(V),  c ffi z~.cl for some c lE T~_~(V), and so 

{a, c} = {a, z~.cl} -- {zea, q }  = O. 

H e n c e ,  a ffi O. 

This proves (b)=* (a) and the converse (a)=, (b) is evident. 
The implication (e) =, (b) might be proved similarly; (a) ~ (e) is evident, and 

the lemma follows. 



188 M. FARBER Isr. J. Math. 

§3. Applications: the Kearton-Trotter theorem and the finiteness theorem 

Here we present two applications of the realization Theorem 2.3. As the first 
application we give a very short proof of the famous Kearton-Trotter theorem 
[K2], [K3], [Tr], which asserts that simple odd-dimensional knots are equiva- 
lent if and only if they have isomorphic Blanchfield or Milnor forms. Our proof 
is based upon Theorem 2.3 and Lemma 3 of J. Levine's paper [IA]. As the 
second application, we prove the assertion announced in [F2], [F5] that, up to 
a finite number of possibilities, stable knot type is determined by its dimen- 
sion, the Alexander modules up to the middle dimension and the Blanchiield 
(or Milnor) pairing on the Alexander module of the middle dimension. For 
fibred knots this fact was established in [F1]. J. Haussmann [H1] has proved 
this result is a particular case of knots having only one non-zero Alexander 
module below the middle dimension. 

The final version of our finiteness theorem (Theorem 3.6) uses algebraic 
results of [BKW] and [BKW1]; it states that we could delete the Blanchfield 
form from the collection of classifying invariants modulo finiteness in the odd- 
dimensional case also. 

An odd-dimensional knot K = (S "+2, k"), n -- 2q - 1, is called simple [IA], 
if ~(S  ~ +2 _ k) = Z and Aq(K) is the only non-zero Alexander module. 

3.1. THEOREM ([K2], [Tr]). Assume n = 2 q -  1, q > 3, and KI, K2 are 
simple n-dimensional knots. Then K~ is equivalent to K2 i f  and only i f  there 
exists a A-isomorphism f :  Aq(KI) ~ Aq(l~) preserving the Milnor (or Blanch- 
field) form. 

The last condition means that for a, b EAq(K~) 

[ f(a), f(b)l = [a, b], 

where [ , ] denotes the Milnor form. In [Tr] (or [F3]) it is shown that Milnor 
and Blanch field forms mutually determine each other. 

PROOF OF 3.1. Let VI be any minimal Seifert manifold of K~. Denote by 
$1 C Aq(KI) the P-lattice determined by V~ via the construction described at 
the end of 2.1. Assume that $2 c Aq(K2) is the image of S~ under some 
isomorphism Aq(KO~Aq(K2) preserving the Milnor form. By virtue of 
Theorem 2.3, we may construct a Seifert manifold V2 of K2, corresponding to 
$2. Thus, we have P-isomorphism 
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preserving the intersection numbers. Now I:1 and V2 admit  identical Seifert 
matrices (because the Seifert pairing 0 might be expressed in the form 
O ia ® b) = (a, zb ) through multiplication by z E P and the intersection form) 
and by Lemma 3 of [L4], 1:1 and I:2 are ambient isotopic. So K~ and K2 are 
equivalent. This proves the theorem. 

3.2. We will say that n-dimensional knots K~ and / (2  are homologically 
equivalent (or have the same homology type) if  there exist A-isomorphisms 
f~:AriKI)--'AriK2), r = l, 2 . . . .  , q = [in + 1)/2]; in the case of  odd n we 
require that fq preserves the Milnor form. We will also use the notion of  stable 
equivalence: two knots are said to be stably equivalent if they become equiva- 
lent after application of  an iteration of the Bredon suspension; details may be 
found in [B], [KN], [F7], IF8]. 

3.3. THEOREM. There exist only a finite number of n-dimensional knots 
( for fixed n) which are all homologically equivalent but pairwise stably non- 
equivalent. In other words, the Alexander modules A~(K),... ,AqiK), where 
q = [in + 1)/2], together with the Milnorform Aq (K) X Aq (K) ~ Q (in the case 
of odd n) determine the stable type of an n-dimensional knot up to a finite 
ambiguity: 

PROOF. Assuming the contrary, suppose that there exists an infinite 
sequence K~, K2 . . . .  of  n-dimensional knots which are all homology equivalent 
and pairwise stably nonequivalent. Our arguments will consist of  three steps. 
In the first step we will show that we may assume all knots K~, K2 . . . .  to be 
stable. In the second stage we will prove that we may assume that all knots 
K~, K2, • •. admit Seifert manifolds of  the same stable homotopy type; here the 
realization theorem 2.3 will be used. In the last stage, we will find a contradic- 
tion, using a study of the group of  self-homotopy equivalences and its action 
on homology; this stage is very similar to the arguments in the fibred case [F1]. 
At this stage the general stable homotopy classification of knots [F3], IF4] will 
be used. 

The first stage is the easiest. Taking N > 0 sufficiently large, consider the 
sequence 

cOZY(K1), co~V(K2) . . . .  

where co denotes the Bredon suspension [B], [KN]. All knots in this sequence 
are homology equivalent and pairwise stably nonequivalent. I f  N is large 
e n o u ~ ,  for instance 2N > n, then all knots co2N(Kj) are stable. So we will not 
lose generality if we assume all knots in the initial sequence 



190 M. FARBER Isr. J. Math. 

K I ,  g 2 ,  • • • 

to be stable. 
Denote q = [(n + 1)/2]. Let us distinguish a set of P-lattices Dr C Ar(K~), 

r = 1, 2 , . . . ,  q in the Alexander modules of K~; in the case of n odd, we require 
the middle dimensional lattice Dq C Aq(K~) to be self-dual. It is clear that it is 
possible to do this; we are able, for example, to consider the set of P-lattices 
determined by some minimal Seifert manifold of K~, whose existence is 
guaranteed by Corollary 2.5. 

Let 
Ar(K~)-~ A,(Kj), r = 1, 2 . . . .  , q, j = 1, 2 , . . . ,  

be the homomorphisms realizing the homology equivalence of knots K~ and 
Kj. Denote by D~ the image of Dr under this isomorphism. 

By Theorem 2.3 applied to the system of lattices Dr i cAr(Kj),  
r = 1, 2 . . . .  , q, there exists a Seifert manifold Vj of  Kj such that the P- 
module Hr(Vj) is isomorphic to D~ for r -- 1, 2 , . . . ,  q, and the isomorphism 
Hq(Vj) ~ D~ takes the restriction of the Milnor form to the intersection form 
o n  Vj. 

Thus, we have P-isomorphisms 

~pJr:Hr(VO-"Hr(Vj), r = l , 2  . . . .  ,q ,  j = l , 2  . . . .  

where in the case of odd n, n = 2q - 1, the homomorphism 

has the property 

el : Hq(V,)--'HAS) 

<¢~(x), e~(y)>~ = < x , y > v , ,  

for x, y E Hq(V~), ( , ) ~ denoting the intersection form on Vj. 
Define P-homomorphisms 

g~ : B,(VI)--* Br(Vi), r = 1, 2 . . . . .  n 

(Br denoting the Betti group) in the following way: for r =< q, ~t~ is just the 
restriction of  ~ ,  and for r > q we define ¥~ by requiring the condition 

(1) (¥~(x), ~v~(y))~ -- (x, Y)v, 

for x ~ B r ( V i ) ,  yEB,,+~_r(V~). By non-singularity of  ( , ) this condition 
defines ~ uniquely. It is clear that ¥~ are P-isomorphisms and that (1) holds 
for all r = 1, 2, . . . .  n (not only for r > q). 
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Manifolds VI, V2,... have isomorphic homology groups in all dimensions. 

For r ~ q this follows from the existence of the isomorphisms q~, while for 

r > q the group H,(Vj) may be expressed as 

Hom(H.  +~_, (V j); Z) (~ Ext (H, _, ( Vj); Z) 

(by Poincar6 duality and the universal coe~cients  theorem), and now 
n+l-r<-_q. 

By Corollary 5.2 of  IF1], in the sequence VI, V2,. . .  there is an infinite 
subsequencc consisting of  stably homotopy equivalent spaces. Thus, we arc 
able to assume that all spaces in the sequence V~, V2 . . . .  are stably homotopy 
equivalent. For each j let us fix some S- equivalence ~j : V ~ Vj, where V = V~, 

~ = id. 

Let pj = (Vj, uj, zj) bc the stable isomctry structure of Vj. The set 

qj = ( V ,  uj o (~j ® ~j), ~7 ~ ozj o~j) 

is the stable isometry structure isomorphic to pj. Theorem 3.3 will follow if we 
can show that in the sequence 

q l ,  q 2 ,  • • • 

at least two stable isometry structures are isomorphic (in fact, if  q~ and qj are 
isomorphic, then Pi and pj are isomorphic and by Theorem 2.6 of  [F4], Ki and 
Kj are equivalent - -  the contradiction). 

Let us consider the set $1 of  all stable isometry structures q -- (V, u, z) with 
P---- Fl fixed. On this set the group GI -- G~(V) of  S-equivalences V--- Fac ts  
from the left: for g E Gt and q ~ S~ we put 

gq = (V, u o ( g - l  @ g - l ) ,  g o z o g - l ) .  

Let us also consider the set $2, whose elements are all collections 
( P t , - - - ,  Pn; ll, . . . .  l,) where Pr: Br ~ B , ,  r = I, 2 . . . .  , n is a Z-homomor-  
phism, B, = B,(V), and 

I,:B, XB~+t_~---Z, r = l , 2  . . . . .  n 

is a Z-bilinear form. 
Consider also the left action of  the group 

G2-- f i  Aut(Br) 
r--I 
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on $2, which sends the pair, consisting of the sequence {g,}7-~ EG2, g , ~  

Aut(Br) and the collection ( p ~ , . . . , p n ; l ~ ,  . . . .  I n ) E S 2 ,  into the element 
. . . .  p ' ;  . . . . .  1;) s2 with 

pzrfgr°pr°gr', 1) =lr°(gTl Xg;II_r). 

There is the natural map S~-*$2 which assigns to any stable isometry 

structure q = (V, u, z) the collection (Pl, • • •, P~; 11 . . . .  , ln) with p,:  Br "-'B, 
being the homomorphism induced by z : V--- V, and with l, : B, × B~+I_, ---Z 
being the homomorphism induced by u: V® V---S ~ ÷1. We also have the 
natural map 

GI'-"G2 

sending any stable equivalence g: V~ V to the sequence 

n 

(gr)rn-,  E G 2  = I I  Aut(Br)  
r f f i l  

with g,: B, --- B, being the map induced by g. 
The constructed sets S~ and $2 with G~ and G2 actions, respectively, satisfy 

all conditions of Proposition 5.4 of [F1]. (This follows from Propositions 5.1 
and 5.3 of [F1].) By Proposition 5.4 we are able to state that the natural map 

S I / G !  --* $2/G2 

has the following property: the preimage of any finite set is finite. 
The sequence of stable isometry structures 

ql, q2, q3, • • . ,  

constructed above, defines a sequence of  elements of S~, which lie in the 
different orbits of the action of G~. Thus, we will get a contradiction if we 
show that the elements of $2 corresponding to qm, q2, • • • lie in the same orbit of 

G2. 

The collection 

( p ~ ,  p~  . . . .  , p ~  ; t~, . . . , t ~ ) ~ S ~ ,  

corresponding to q j, can be defined by the following compositions: 

• ~. (zj), ( x : ' ) ,  
pJ:  B,(vj) , B,, 

t~,: B ,  X Bn+,-, ' ' × ' f  Br(Vj) X Bn+,_r(Vj) (')~ Z, 
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for r = 1,2 . . . .  , n .  For any j = 1 , 2 , . . .  let us define the collection 
(g~, g~ . . . .  , g~ ) ~ G2 in the following way: 

nj. (v,,l) -t 
" r (Vj )  ' " , . .  

It is easy to verify that 

g l  o p i o  ( g l ) - '  = = 

l~ o ( ( g  J) X ( g J + r - 1 ) - l )  = lr  1, 

for r - - l ,  2 , . . . ,  n. This means that all collections 
li . . . .  , l~) , j  = 1, 2 , . . . ,  lie in the same orbit of G2. 

The theorem follows. 

( p i ,  . . . .  

The next statement is equivalent to Theorem 3.3 via results of IF7], [F8], 
saying that for stable knots the notions of stable type and isotopy type 
coincide. 

3.4. THEOREM. For any fixed n > 5 there exist only a finite number o f  
stable n-dimensional knots, which are all homology equivalent but pairwise 

nonequivalent. 

3.5. It is proved in [BKW], [BKW1 ] that on a given Alexander module there 
exist only finitely many congruence classes of Blanchfield forms. Combining 
this result with Theorem 3.4 we get the following statement, which may be 
considered as the main result of this section. 

3.6. THEOREM. The set o f  Alexander modules AI, A 2 . . . . .  Aq, deter- 
mines the type o f  a stable n-dimensional knot (n = 2q or n = 2q - 1) modulo 

finiteness. 

Another algebraic finiteness theorem of E. Bayer and F. Michel [BM] states 
that there are finitely many isomorphism classes of Alexander modules with 
given square-free Alexander polynomial. From this and from Theorem 3.6 

there follows: 

3.7. THEOREM. Given integer n and a set o f  square-free integral poly- 

nomials Am, A2, . . . .  Aq, where q = [(n + 1)/2], there exists only a finite number 
o f  types o f  stable n-dimensional knots having Aj as i-dimensional Alexander 

polynomial for i = 1, 2 . . . .  , q. 
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§4. Knot modules: lattices and duality 

In this section auxiliary algebraic facts are presented, on which the proof  of  
Theorem 2.3 is based. Our main interest is in the study of the relations between 
P- and A +-lattices of knot modules, in the light of the Milnor duality. In fact, 
we deduce Theorem 2.3 from the general realization Theorem 1.5 by showing 
that the sequence of A+-lattices in Alexander modules of all dimensions, 
corresponding to a Seifert manifold, is completely determined by the 
sequences of P-lattices in Alexander modules below the middle dimension, 
and vice versa. 

Recall some of  our notations: A = Z [ t , t - l ] ,  A+ =Z[ t ] ,  A_ =Z[ t -~] ,  

L = Z[t, t - 1, (1 - t) - 1], p = Z[z]. We consider P as a subring in L, identifying 
z with (1 - 0 -1. We also may write L = Z[z, z - l ,  t -l] where t always means 
1 - z .  

A module o f  type K [LS] is a finitely generated A-module A with the property 
that the multiplication by 1 - t C A is an automorphism A ---A. The Alex- 
ander modules of  knots of  codimension two are of  type K. 

4.1. PROPOSITION. Let A be a module o f  type K and R C A be a P- 
lattice. Then 

(1) R is finitely generated as an abelian group; 

(2) any element a CA can be represented in the form a = (z2)-"b for some 
b C R ,  n _->0; 

(3) Torsz A c R; 
(4) for any a C A  there exists an integer N ~ 0 with N a C R ;  
(5) the A+-lattice A+R, generated by R,  coincides with 

{a CA; z"a CA for some n >-_ 0); 

(6) the A_-lattice A_R,  generated by R,  coincides with 

{a CA; t"a CA for some n > 0); 

(7) R = A + R  N A _ R ;  
(8) tkA+R n t tA_R = tkz- tR,  where k and I are integers. 

PROOF. (1) It is well known [LS] that there exists an integer polynomial 
A(t)CA+ with A(1) = 1 and AA = 0. Let A(t) be 

A( t )=  1 +a l (1  - t ) +  . . .  +c~k(1 -- t) k, 

with ai EZ .  Define 
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V(z)f z k + a ,  z k - '  + " ' "  + a k .  

Then V(z)a = 0  for all a E A .  So, if elements a, . . . . .  a j E R  generate R as a 

P-module,  then elements 

a l ,  • • • ,  a l ,  z a l ,  • • • ,  z a l ,  • • • ,  z k - l a l ,  • • • , z k - l a l  

generate R over Z. This proves (1). 
(2) follows from the fact that the ring L is a localization of  P over the 

multiplicative set, consisting of  powers (z~.)", n >= O. 

(3) The multiplication by zC. E P  is a monomorph ism R ---R. By virtue of 
(1) the group T = Torsz R is finite, and so the multiplication by ze is an 

isomorphism T--- T. 
Assume a ETorszA.  By (2), a = (zZ) -"b  for some b e R ,  n ->_ 0. Since a is of  

finite order, b is of  finite order too, i.e., b E T. From the previous paragraph we 
know that we may write b = (zC.)"b, for some b l~  T. Then a = ( z~) -"b  = b, 

and so a E T .  
(4) By virtue o f ( l ) ,  there exists an integer N ÷ 0 such that N R  c (ze)R.  If  

a C A ,  a = (zC.)-"b for some n >___ 0, b E R ,  then N"a £ R .  

(5) I f a  E A + R  and e ~ , . . . ,  em E R  generate R over Z, then 

a = ;q(t)et + . . .  + lm(t)em, 

where 2 t ( t )6A+,  i = 1, 2, . . . .  m.  Thus, 

z"a = z"A,(t)et + . . .  + Z " 2 m ( t ) e m ,  

and for large enough n > 0 all z"2~(t) might be written as polynomials in z 
(since zt  -- z - 1). So, z"a 6 R .  

Conversely, assume z"a E R .  Then 

and since 

a = z-"(Iz~e~ + . . .  +ltmem), / t i 6Z ,  

z-" = (I - t)" cA+, 

we have a e A + R .  (6) can be proved similarly. 
(7) I f a  6 A + R  N A_R,  then for large enough n > 0 

z"a eR, ~"a ER. 

One can find an integral polynomial f (z)  with the property 

zT(z) + = l, 
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for example 

Thus 

and so 

" - ~ (  k ) z . - k - ~ ( l _ z ) k "  f(z)= E 
k-O 2n- -  1 

a = z"f(z)a + t"f(~.)a ER,  

A+R NA_R C R .  

The reverse inclusion is evident. 

(8) Suppose that X c A is a A+-submodule. There exists a polynomial 
p ( t )~A+ with a = ( 1 -  t)p(t)a for any a EA, so the multiplication by 
1 -  t is an isomorphism X---X. Since t = - ( 1 -  t ) . t ,  we conclude that 
tkx= tkx, k E Z. 

Similarly, if Y c A is a A_-submodule, then trY = z- tY,  l EZ.  
From these two statements it follows that 

t*A+R =  *A+R = U = U = 
n - O  n - O  

Similarly, 

dA_R = A_(~.kz-tR), 

and now statement (8) follows from (7). 

4.2. REMARK. The arguments used in the proof of statement (1), also 
prove that any module of type K contains at least one P-lattice. 

4.3. Let us consider a module A of type K. A 7.,homomorphism f :  A ---Q 
will be called proper if it assumes integral values on some P-lattice R C A. The 
set of all proper homomorphisms f :  A - - Q  will be denoted by D(A). 

We will consider D(A) as A-module, where f o r f ~  D (,4) the homomorphism 
(t f)GD(A) is defined by the formula 

(tf)(a) = f ( t - ta) ,  a CA. 

If f assumes integral values on R c A, then (tf) assumes integral values on 
tR c A, which is also a P-lattice. 

4.4. PROPOSITION. (1) For any module A of  type K the module D(A) is also 
of  type K. 
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(2) The canonical homomorphism 

A ~D(D(A)) 

is an epimorphism with kernel Torsz A. 

PROOF. (1) Suppose R CA is a P-lattice. Any other P-lattice R~ CA 

contains (z2)"R for some n > 0 (this follows from 4.1 (2)), and so D(A) can be 

defined as the set of  all Z-homomorphismsf :  A ~ Q, assuming integral values 

on (z2)"R for some n >= 0. 

Let R* be Homz(R;  Z). Any element of  R* may be uniquely extended 

(by virtue of  4.1(4)) to an element of  D(A). Thus we may consider R* as a 

subset of  D (A). 

Formulas 

((1 - t)f)(a) = f((1 -- t-~)a), 

((1 -- t- ' ) f)(a) = f ( ( l  -- t)a), a~A,  

show that the multiplication by 1 - t  C A  is an automorphism of  D(A). So 

D(A) can be considered as L-module. In fact, 

(zf)(a) = f(2a), (tf)(a) = f(za) 

for a EA.  Thus, from the above remarks it follows that for any fED(A)  there 

exists n >_-0 with (zt)"fER*, so f =  (zt)-"f  for some f ER*.  Since R* is 

finitely generated over Z, we conclude that D(A) is finitely generated over A. 

Hence, D (A) is a module of  type K and R* is a P-lattice. 
(2) It is clear that Torsz A is contained in the kernel ofA ~ D(D(A)). I fa  EA 

is an element of  infinite order, then for some N > 0, Na belongs to R and so 

there exists f E R *  with f (a )#  0; thus the kernel of  A --, D(D(A)) is Torsz A. 

From the commutative diagram 

R ~ R * *  

1 
A ~D(D(A)) 

we see that, given y ED(D(A)), we can find n _-> 0 with (zt)"y ER** and then 

realize (zt)"y by some r.ER. Thus, (zt)-"rEA is mapped onto y, and so 

A ~ D(D(A)) is onto. 

4.5. Let A and B be modules of  type K. A duality pairing is a Z-bilinear map 
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[ , ] : A  × B ~ Q  

satisfying: 
(1) [ta, tb] -- [a, b] for all a EA, b ~B;  
(2) the associated map A----Homz(B; Q) has kernel Torsz A and image 

D(B). 
Thus, the duality pairing defines a A-epimorphism 

A -'-D(B) 

with kernel Torsz A. From Proposition 4.4 it follows that the other associated 

map 
B-~ Homz (A; Q) 

is onto D(A) with kernel Torsz B. 

4.6. PROPOSITION. Let [ , ] : A X B ~ Q  be a duality pairing. Then 
(l) for any P-lattice R c A the set 

R* = {b ~B; [r, b] ~ Z  for any r ER  } 

is a P-lattice in B; 
(2) R** = R; 
(3) i f  R1,R2 CA are two P-lattices, then A+R1 =A+R2 i f  and only if 

A_(R~) = A_(R~*); similarly, A_R~ =A_R2 i f  and only i f  A+(R~*)= 
A+(R~). 

PROOF. (1) R # is the preimage of R* (introduced in the proof of Pro- 
position 4.4) under the map 

B -,D(A).  

Statement (l) now follows from Proposition 4.4 and the fact that R* c D(A ) is 
a P-lattice. 

(2) may be proved similarly. 
(3) According to Proposition 4.1(5), the equality A+R~ = A+R2 takes place 

if and only ifz"R~ c R2 and z"R2 C R~ for some n > 0, m >_- 0. But in general, 

2kR # -~(z-kR) #, zkR # = ( 2 - k R )  #, 

where R is a P-lattice, R c A, and kis an integer. Thus, the inclusion z~R~ c R2 
gives 

R~* C (z"R,) # = 2-'~R~, 2"R~ C R~ 



Vol. 66, 1989 MINIMAL SEIFERT MANIFOLDS 199 

and similarly 

Applying 4.1(6) we get 

zmR~* c R L  

A_(R~) -- A_(Rff). 

The other statement can be proved similarly. 

4.7. PROPOSITION. Suppose A is a module  o f  type K and  

[ ,  ] : A × A - ~ Q  

is an e-symmetric duafity pairing, e = + 1. Then A contains a self-dual 

P-lattice, R = R ~. 

PROOF. Let R C A be an arbitrary P-lattice. By virtue of the identity 

((z~)-"R)'* = (z~)nR% 

for sufficiently large n we will have 

((z~)-"R) ~ c R c (z~)-"R. 

Thus, we are able to assume that 

R # C R  

(if this is not true take (z¢)-"R instead of R). 
Assuming R # c R, consider the set 

S = { r E R ;  z " r ~ R  # for some n ->_ 0}. 

S is a P-lattice in S. We will show that S is self-dual. 
Suppose r~, r 2 E S  and z"r~, z " r 2 ~ R  *~. There exists an integral polynomial 

f(z) with the property 

1 ---- z" f ( z )  + 2"f(2) 

(constructed in the proof of  statement 4. I(7)). Now, 

rv -- z"f(z)rv + t " f ( z ) r , ,  v = 1, 2 

and so 

[r,, r,l -- [z"f(z)r,, z~f(z)r,] + Iz".f(z)r,, *'f(z)r,] 

+ Wf(z)r , ,  z"f(z)r,] + [~.~f(z)r,, z~f(*)r,l. 
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Since z"rvER #, the three first summands are integral. But the fourth 

summand is equal to [z"f(z)r~, z"f(z)r2] and so it is also integral. This proves 

S # c S .  
For some n > 0  the lattice (ze)nR is contained in R #. Thus, for r E R ,  

~"r E S. If rl E S*, then [r~, e"r] = [z"q, r] is an integer for any r E R ,  and so 

z"r~ ER # and r~ ES .  This proves S # c S. 

4.8. DF.FINIr[ON. L e t R  be a P-module. A submodule T c R is basic if  

(a) T contains (zg)kR for some k >_- 0; 

(b) if  r ~ R and Nr ~ T for some N # 0, then r E T; 

(c) the kernel of  the homomorphism T ~  T given by multiplication by 

zt  ~ P is contained in Torsz T. 

It was shown in [F3], 6.2, that every P-module finitely generated over Z has a 

unique basic submodule. 
Assume R is a P-module finitely generated over Z with no Z-torsion. Let T 

be its basic submodule and let M c R be the set 

{rER; (z2)kr --- 0 for some k > 0}. 

Then it is clear that 

R =  T~)M. 

In the general case, if  we would not have assumed that R has no Z-torsion, then 
R = T + M and T N M is equal to the torsion subgroup of  R. 

4.9. Now we are going to apply the algebraic notions of  this section to the 

geometry. 
Let K = (S "+2, k") be a knot, X = S "+2 - k its complement and p : .~--* X 

the infinite cyclic cover. Any Seifert manifold V c S" +2 of  K admits a lifting 

f :  int V--, +~ and the image of  the induced map 

T. : H, V--* H,X = A,(K) 

is a P-lattice, which will be denoted by Pi(f)-  
On the other hand, a Seifert manifold has an obvious framing v, and the 

lifting f :  int V--- )? defines also a lifting 

u: x (v ,  

the manifold X(V, v) having been constructed in 1.1. The image of  the induced 

map 
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H,(X(V, v ) ) - -2  

is a A+-lattice in )(, which will be denoted by A+i(f) .  

4.10. PROPOSITION. There exists a bilinear map (the Milnor pairing) 

[ , ] :Hi()?) X H.+I_i ( ) ( ) - -*Q,  

having the following properties: 
(1) if a ~ Hi(V) and b ~ 11. + ~ _ i(V) belong to the corresponding basic submo- 

dules of Hi V and H,+ l_i(V), then 

[f,(a), f(,b)] = (a, b ), 

where ( , ) denotes the intersection number; 
(2) [ , ] is a duality pairing in the sense of 4.5; 
(3) P-lattices P~(f) and P, +~_~(f) are dual to each other; 
(4) the lattice A+,-(f) coincides with the A+-lattice, generated by P~(f). 

PROOF. First we will construct [ , ]; basically, property (1) will be taken as 

the definition. 
Let x~H~X,  yEH,+~_i.~. According to Lemma 6.3 of [F3], there exist 

elements a E H, V and b E H, + 1-~(V), belonging to the basic submodules, and 
integers N ~ 0, M # 0, such that 

Nx = f,(a), 

Then we define 

My = f ,(b) .  

1 
Ix, y] = ~--~ ( a , b ) e Q .  

The correctness of this definition follows from Lemma 6.3 of [F3]. 
Property (1) is obviously satisfied. 
To prove (2), note that Proposition 1.2 of [F3] implies 

[ta, tb] = [a, b] 

for all a, b ~H, .Y.  Consider the associated map 

Hif( "~' Homz(H,  +,_i(.~); Q); 

we have the following commutative diagram: 
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flHi V a~, 

1° 
N v  

, Hom(flH.+l_i(V); Z) 

, Hom(H~ + l -i ()?); Q). 

Here fl means the operation of taking the basic submodule, asst is the map 

associated with the pairing 

( , )I:flH, V×f lH~+~-~(V)~Z  

which is the restriction of the intersection form ( , ), and the map ~o acts as 

follows: given g:pH,,+I_i(V)---'Z, consider flH,,+l-iV as embedded in 

H,+~_,(.~), then Lemma 6.3 of  [F3] says that g admits a unique extension 

g : H ~ + I _ ; ( ) ? ) ~ Q  and we set g=~0(g). Commutativity of  this diagram 

follows from the definitions. The vertical map on the right is a mono- 

morphism, the vertical map on the left has the torsion subgroup as its 

kernel (see 6.3 of  [F3]). Thus, the kernel of  ass coincides with the torsion 

subgroup. 
It is clear that the image of ass lies in the set of  proper homomorphisms, 

D (H~ + ~ _ ~ (X)). To prove that the image of ass coincides with D (H~ + ~ _ i (.~)), it 
is enough to show that 

( , )t : f lH iVXf lH ,+l - i (V)  --*Z 

induces an epimorphism 

flHi V ---, Horn(fill,  + l - i ( V); Z). 

To do this, suppose we are given g:flH,,+I_~(V)--*Z. Since flH,,+l-i(V) is a 

pure subgroup, g may be extended to a homomorphism 

g: 

We shall consider the unique extension g satisfying g(b)= 0 for all b E  

rH,  + l-~(lO, where 

rH, +~_i(V) = (b EH,+I_i(V);  (z2)"b = 0 for some n > 0}. 

By virtue of the Poincar6 duality, there exists a EHi V with (a,  b ) = g ( b )  
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for all b E H . + l _ i ( V ) .  Write a f f i a l  q-a2, where alEf lHi (V) ,  a2~zni(v). 
From the equalities 

(at, zH .+ l - i (V ) )  = O, (a2,,SH.+l_~(V)) = 0 

it follows that 

(al, b) = g(b) 

for all b E H ~ + l _ i ( V )  and, thus, 

assl(a0 = g.  

This completes the proof  of  (2). 
(3) follows from the arguments described immediately above and from the 

remark that 

Pi(J') ffi i m [ f , :  pH,(V).-- , .Hi£].  

(4) might be proved by the standard arguments used in the proof of 
Proposition 2.2 in [F3]. 

4.11. PROOF OF THEOREM 2.3. Suppose that all conditions of  the theorem 
are satisfied. Lattices S, c H , X  are given just for r _-< q ffi [(n + 1)/2]. Define 
S, c H,~" for r > q to be (S. +~_,) # - -  the lattice dual to S. +t_, relative to the 
Milnor form. Let C, ~ A + S , ,  r - - 1 ,  2 , . . . ,  n; in other words, C, is the 

A+-lattice, generated by S,.  
The realization Theorem 1.5, after having been applied to the manifold 

(S" + 2 _ small tubular neighbourhood of  the knot  k), gives a Seifert manifold 
V" + ~ C S ~ + 2 of  K with the properties: 

(a) Vis simply connected; 
Co) it is minimal  in the sense of  2.5; 
(c) for some lifting f :  int V--* X, where X is the infinite cyclic covering of 

the complement  X -- S "+2 - k, we have A + , ( f )  ffi ta.C,, r = 1, 2, . . . .  n, 

a, is an integer. Here we use notations introduced in 4.9. 
Let  1), denote P, ( f ) .  D, is a P- lattice in H, X and A +Dr ffi t*,C, (because of  (c) 

and statement (4) of  4.10). From part (4) of  4.10 we know that 

D, ffi (D.+I_,)'. 

and thus for any r -- 1, 2, . . . .  q we have 
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A + D r  = t",A+&, 

A+D7 = t " . * , - . A + S T .  

If  we put a = ar, b = a n + l - r ,  then the second equality can be rewritten as 

A + D 7  = A + ( t b S T )  = A+(tb&) *. 

Using 4.6(3) we get 

and 

A _ D r  = A _ ( t b S r )  = t b A _ S  r 

Dr = A+Dr A A_Dr 

= t ~ A + S r  N t b A _ &  

= 2az -bSr  = 2 . , z - . . ÷ , - , S ,  ' 

where we have used 4.1(7) and 4.1(8). 
Thus, we have proved that the map 

e-",z".+,-,f,: Hr V-"Hr  

Isr. J. Math. 

§5. Proofs  of  L e m m a s  1.6, 1.7 and 1.8 

The proofs of Lemmas 1.6 and 1.7 will in turn use Lemmas 5.1 and 5.2, 
which are stated below. 

In Lemmas 5.1 and 5.2 it is assumed that a smooth, compact, n-dimensional 
manifold Y" is given and two submanifolds, V0, I/1 c O Y are distinguished. It is 
also supposed that n >_- 6, the manifolds V0, 111, Yare simply connected and the 

provides a monomorphism with image &. If  n is odd, n = 2q - 1, and r -- q, 
then this homomorphism is equal to ( - t)-~, f ,  which clearly takes the Milnor 
form to the intersection form of V (by virtue of  4.10(1)). 

This completes the proof. 



cobordism on the boundary  6Y  = cl(0Y - (V0 t3 V0) between OVo and  c3V~ is 

trivial (Fig. 1). 

v~ 

v, 
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Fig. 1. 

5.1. LEMMA. For any k < n - 3 there exists a smooth simply connected 

(n - 1)-dimensional submanifold W c Y with 3 W = W 0 3 Y = 3 Vo such that 

Y - W consists o f  two components, and for the component N, containing VI 

(cf. Fig. 2), the following is true: 

Y 

Vo 

Fig. 2. 

(1) the induced by inclusion homomorphism H~(N, VO-- 'Hi(Y,  VO is an 

isomorphism for all i < k - 1 and is an epimorphism for i --- k + 1; 

(2) for i = k and for i > k + 1 the group H~(N, VO is trivial. 

5.2. LEMMA. For any k < n - 3  and for any class Z E H k ( Y ,  V~) there 

exists a smooth simply connected (n - 1)-dimensional submanifold W c Y 

with 0 W = W A 0 Y = 0 Vo, such that Y - W consists o f  two components and for 

the component N, containing V~, the following is true: 
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(1) the homomorphism induced by inclusion Hi(N, V~)---'Hi(Y, tl,) is an 
isomorphism for i < k - 1; 

(2) the group Hk(N, V~) is isomorphic to Z and the class z is the image of its 
generator under the homomorphism Hk(N, VI)--" Hk(Y, Vl); 

(3) the group H~(N, IT,) is trivial for i > k. 

5.3. In the proofs of Lemmas 5.1 and 5.2 we shall use the following well 

known fact: if an (n - 1)-dimensional manifold W is obtained from another 

(n - 1)-dimensional V by a spherical modification of  index i, where 2 < i < 

n - 3, then W is also simply connected. 

5.4. PROOF OF LEMMA 5.1. According to Smale's theorem ([MI], th. 6.1) 
there exists a Morse function f :  Y - ,  [0, 1], which is equal to 0 on 1I, and 1 

on V0 and such that for each j ,  0 < j _-< n, the number of critical points of  

f of  index j is equal to b j+q j+q j_~ ,  where bj is the rank of the 

group Hi(Y, V,), and qj is the minimal number of generators of its 

torsion subgroup. Moreover, the restriction of f on the boundary cobordism 

t S Y = c l ( d Y - ( V o U  111)) has no critical points. The function f gives rise 

to a handle decomposition of Y, with the handles glued in the order of  

indices to a collar of  Vt in Y. It is clear that b, = 0, q~ = 0. By the Poincar6 

duality, 

Hn_,(Y, V,),~ H'(Y, Vo) 

and 

Hn-2(Y, Vl)~H2(y, Vo)'~ H o m ( H 2 ( Y ,  V0); Z ) .  

These imply that bn = bn-i = 0 and q~ --qn-I = q~-2 = 0 and it follows that 

the function f has no critical points of  indices 0, 1, n - l, n. 

Let Y' be obtained as the result of  gluing of all handles of indices < k - 1. 

We may suppose that JY is contained in Y'. 
Let 2 _-<j _-< n - 2. In the group Cj of the chain complex, generated by f ,  we 

may choose the following base, 

z { , z {  . . . . .  

where It = bj + qj, q = qj-l, the elements z~ form a base in the group of 

j-dimensional cycles Zj, and the boundaries of the elements fl~ form a base 
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in the group Bj_~ of  ( j  - 1)-dimensional boundaries. By Theorem 7.6 of  

[M 1 ], we may assume that this base realizes the j-dimensional handles of Y. 

We shall denote by H~ the handle realized by z: and denote by h~ the handle 

realizing fl:. 
Let us suppose that the construction of the previous paragraph has been 

performed for j = k and j = k + 1. 

Since the handle H k+~ realizes a cycle, the intersection numbers of its 

attaching k-dimensional or-sphere with the fl-spheres of  handles of  index 

k are all equal to zero. Thus using the Whitney lemma ([M], th. 6.6), we 
may isotope handles H k + l  such that they do not intersect handles of 

index k. 
Assuming handles H ~  -I'l do not intersect handles of  index k, consider the 

submanifold N c Y, which is the union 

Y ' U  h k U  h k U  . . . u hqk_, u H k*~  U . . . U H k ÷ l  
//k+l " 

It is clear that the homomorphism //j(N, V~)--Hj(Y, V~) induced by the 

inclusion is an isomorphism for j _-< k - 1 and an epimorphism for j = k + 1. 

Besides, Hi(N, V,) = 0 fo r j  = k a n d j  > k + 1. 

The boundary of  the constructed N satisfies ON n OY = OY - int 110. Let us 

denote W = cl (ON n int Y). 
The lemma will follow if we prove that W is simply connected. For 

k + 1 _--< n -  3 it is a consequence of the remark 5.3. If k + 1 = n -  2, 

then, using the dual handle decomposition, we may note that W is 

obtained from V 0 by a surgery of indices 2 and 3. And now we may use the 
remark 5.3 once more, due to the assumptions: n >= 6 and 1Io is simply 

connected. 
The lemma follows. 

5.5. PROOF OF LEMMA 5.2. Let us consider the exact Morse function 
f :  Y--* [0, l ] and the induced handle decomposition on handles of  the form Hi  

and h k similar to the proof of Lemma 5.1. 

Let Y' c Y be the union of  all handles of indices _-< k - 1 and also of 

the handles h k, h k , . . . ,  hkk_,. We shall suppose that Y' contains OY - int II0. 

It is clear that/-/j(Y', V~)= 0 for j > k and the inclusion (Y', V~)-,(Y,  V~) 

induces an isomorphism //j(Y', Vt)-~It j(Y,  V~) for j < - _ k - 1 .  Let Q =  

Y - int Y' and U = Q n Y', cf. Fig. 3. 
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Vo 

y, 

II1 

Fig. 3. 

For all i we have Hi(Q, U) = Hi(Y,  Y') and from the exact sequence 

. . . .  Hi(Y' ,  VI)--" Hi(Y,  V1)---" Hi(Y,  Y') . . . .  

we find: hr. (Y, Y') = 0 for i < k - 1 and the inclusion induces an isomorphism 

n k ( Y ,  VI )~  HK(Y, Y'). 
Thus, Hi(Q, U ) =  0 for i-_< k -  1 and the group H~(Q, U) is naturally 

isomorphic to Hk(Y, VI). Let z ' ~ H k ( Q ,  U) be the image of  z under  this 
isomorphism. The pair (Q, U) is (k - 1)-connected (by virtue of  remark 5.3) 
and applying Corollary 1.1 from [H2] we get an embeddeding D i--,  Q with 
D k ¢q aQ = D k N U = S k- 1, realizing z'. Let Nbe  the union of Y" and a tubular 
neighbourhood o l D  k in Q. 

Consider the following diagram, where all homomorphisms  are induced by 
inclusions: 

Hi(N, VI) P , H,(Y ,  1/i) 

Hj(Y' ,  VI) 

I f j  < k - 1 then ~, is an isomorphism. On the other hand, a is an isomor- 
phism for j  _-< k - 2 since Hi(N, Y') .~ Hj(D k, ODk). Considering the following 
diagram: 
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O--" Hk(Y, V~) ~ Hk(Y, Y') o Hk-,(Y', V,) ~ Hk_~(Y, V~)-~O 

O--.nk(N, H (N, VI) -" gk- (N, V,) O 

one may deduce that a is an isomorphism for j = k - 1 as well. 

Thus, we have proved that for j  _-< k - 1 both a and 7 are isomorphisms. So 

for these values of j ,  fl is an isomorphism too. 

From the above diagram it follows that the homomorphisms cr : Hk(Y, I/1) 
Hk(Y, Y') and X:Hk(N, VO-'Hk(N, Y') are isomorphisms. Since the group 

Hk(N, Y') is evidently isomorphic to Z,  then also Hk(N, V')~. Z. Since the 
image o fz  under a coincides with the image of a generator of ilk(N, Y') under 

v, the homomorphism fl:Hk(N, V1)~Hk(Y, V~) maps a generator of  

Hk(N, V~) into z. 
We now have only to denote W = cl (ON f~ int Y); W is simply connected 

(by arguments similar to those in the proof of Lemma 5.1). 

The lemma is proved. 

5.6. PROOF OF LEMMA 1.6. Let 2<-_k<=n-3 and let (V"- ' ,v )  be a 

simply connected, proper, frame submanifold in M", satisfying conditions 

(I), (II), (IIIi), (IVi) of  Theorem 1.5 for all i < k .  Let the cobordism 
(Y; V0, V0 be obtained by cutting of M along V and let ¢,: Y ~ M  be 
the natural map (cf. 1.1). Apply Lemma 5.1 to the cobordism (Y; V0, 1/1) 
and to the number k. The submanifold W" - 1 c Ywhich is given by this lemma 

has a framing co, with the vectors of co directed inside the component N 

of the complement Y -  W con- taining VI. The image of (W "-1, co) under 

~u is a frame submanifold of M, satisfying conditions (I) and (II) of  

Theorem 1.5; we shall identify it with (W ~-~, co) and denote it by the 

same symbol. 

Suppose that the manifolds Xv = X(V "-~, v) and Xw = X(W "-~, co) are 

constructed as explained in 1.1. There are natural inclusions tXv c Xw c Xv, 
and the induced homomorphism Hr(Xw, tXv)--'Hr(Xv, tXv) is an 
isomorphism for r -_< k - 1 and is an epimorphism for r = k + 1, the group 

Hr(Xw, tXv) being trivial for r = k and for r >= k + 1. This follows from the 

commutative diagram 
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H,(Xw, tXv) 

Hr(N, Vl) 

Hr(Xv, tXv) 

gr(Y, Vl) 

whose vertical isomorphisms are excision isomorphisms and whose lower 

horizontal homomorphism satisfies conditions (I) and (2) of Lemma 5.1. 
We shall later show that (a) the homomorphism j ,  : Hr(Xw)--" Hr(Xv) is an 

isomorphism for r < k - 1 and (b) the homomorphism i , :  Hk(tXv)---" Hk(Xw) 
is an epimorphism and its kernel coincides with the kernel of the homomor-  
phism Hk(tXv) ---" Hk(Xr), induced by the inclusion. Let us complete the proof  
of the lemma supposing (a) and (b) true. By virtue of (a), the homomorphism 
/ t ,  : Ar( W"- 1, 09)---" Hr(M~) is a monomorphism and its image coincides with 
Br(V"- ~, v) for r < k. In other words, ( IV" - 1, co) satisfies conditions (IIIr) and 
(IV,) for r < k. By virtue of(b) Bk(W "-~, co) = tBk(V "-l, v) and now we shall 
show that the kernel P of the homomorph i sm/ t ,  : Ak(W" - 1, co) --, Hg(M¢) is in 
some sense smaller than the kernel Q of the homomorphism/z ,  : Ak( V" - 1, v) 
Hk(M~). In fact, 

P={aE:_Ak(W"-I, co); 3 m  >o,  tma =0} ,  

Q={a~_Ak(V"-~,v);  3 m  >O, tma =0} ,  

and so the restriction of i ,  maps Q onto P and the kernel of the restriction i ,  I o 
coincides with {q U Q; tq = 0}. Thus, P is isomorphic to 

Q/(qEQ;  tq = O) 

and now it is clear in which sense P is less that Q (note that Ak(V "-I,  v) and 
Ak(W "-~, co) are finitely generated over A+ and so P and Q are finitely 
generated over Z). 

Let us iterate the construction, which we have applied to Vin order to obtain 
W. As a result we shall get a sequence (W7 -1, cos), where s = 1, 2 , . . .  of  
framed submanifolds with (Wi, c o l ) = ( W  "-1, co), satisfying (I), (II), (IIIr), 
(IV,) for r < k - 1 and Bk(W'~ '-I , cos) = tSBk( V"-l, V). Besides, the kernel of 
the homomorphism 

#,  : Ak(W~ -1 , cos)~ Hk(M¢) 

is isomorphic to 

Q/{qEQ;  t~q = 0}. 
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It is clear that for sufficiently large s this group is trivial and so condition 

(IIIk) is satisfied. 

To complete the proof we have only to prove statements (a) and (b). From 

the exact homology sequence of the triple (Xv, Xw, tXv), using the fact that 

Hr(Xw, tXv)~Hr(Xv, tXv) is an isomorphism for r < k -  1, we obtain 

Hr(Xv, Xw)= 0 for r < k -  1 and from this it follows that j ." Hr(Xw) ~ 
Hr(Xv) is an isomorphism for r =< k -  2. To show that it is also true for 

r = k - 1 consider the following commutative diagram with exact columns 

and rows: 

Ilk-l(Xv, tXv) 

Ilk-i(Xw, tXe) 
t 

J, 
Hk(Xv, Xw) ~ Hk-,(Xw) , H k_ ~(Xv) , 0  

t t -  
Hk(Xv, tXv) ~' ' Ilk- ~ z(tXv) ~ nk(Xv) 

t 
0 

The homomorphism ¢~ is an isomorphism (see the beginning of  the proof), 

and so q~2 is also an isomorphism. By virtue of  the assumptions of the lemma, 

(IIIk_ ~) is satisfied and so ~5 is a monomorphism, and so ~3 = 0 and also qh = 0. 

This proves that j .  is mono. 

j .  is also onto; this follows from the equality Ilk-~(Xv, Xw) = 0 which was 
obtained above. 

To prove (b) consider the diagram 

i, 
Hk+z(Xw, tXv) ~--~' Hk(tXv) - - -~  Hk(Xw) , 0  

nk+,(Xv, tXv) ¢---~' nk(tXv) ~--~' nk(Xv) , 0  

Due to the fact that ¥3 is an epimorphism (see the beginning of the proof), 

we find 

ker(~ul) = im(~2) -- im(q/2 o qh) = im(~u4) = ker(i.), 

which proves (b) and the lemma follows. 

5.7. PROOF OF LEMMA 1.7. Let 2 < k < n - 3 and (V "-~, v) c M n be a 
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simply connected proper framed submanifold, satisfying (in the notat ion of  
Theorem 1.5) conditions (I), (II), (III,) for r ffi< k and (IV,) for r -< k - 1. 

Suppose also that tBk(V, v) C Ck C Bk(V, v) and the factor group Ck/tBk(V, v) 
is cyclic, generated by some bEBk(V,v)/tBk(V,v). Let the cobordism 
(Y; V0, V~) be obtained by cutting M along V and ~ :  y ~ M b e  the natural map  
(see 1.1). Due to conditions (IIIk_ 1) and (IIIk), the group Bk(V, v)/tBk(V, v) is 
isomorphic to Hk(Xv, tXv); let z E Hk(Xv, tXv) denote the image o fb  under  the 
evident isomorphism (here Xv ffi X(V, v) is the manifold of  the subsection 

1.1). By the excision axiom Hk(Xv, tXv) ,~, Hk(Y, V0 and let z'6Hk(Y, VI) be 
the image of z. 

Apply Lemma 5.2 to the cobordism (Y; V0, VI), the number  k and the class 
z'. The submanifold W"-~ c y ,  which is given by this lemma, has a framing o~, 

whose vectors arc directed into the interior of  the component  of Y -  W, 
containing V~, which we denote by N. The image of  ( W, oJ) under  ¥ is a framed 
submanifold in M,  satisfying (I), (II) of Theorem 1.5; we will identify it by 

(W ~-~, oJ) and denote it by the same symbol. 
Let Xw = X(W, oJ) be built as in I .I .  There are inclusions 

tXv i ' Xw------" Xv, 

and conditions (1), (2), (3) of  Lemma 5.2 imply that the homomorph ism 
induced by the inclusion 

H,(X,.. tXv) H,(Xv. tX ) 

is an isomorphism for r < k - 1. Besides, the group Hr(Xw, tXv) is trivial for 
r > k, and it is Z for r = k; moreover, for r ffi k the image of  a generator of  

Hk(Xw, tXv) in Hk(Xv, tXv) is z .  

Let us show that (a) the homomorph ism 

j,: Hr(Xv) 

is an isomorphism for r ~ k - 1, and (b) for r = k its image coincides with 

C k C Hk(Xv). 
In fact, similarly to the proof  of  Lemma 1.6, H,(Xv, Xw) -- 0 for r _-< k - 1 

and so j , :  H,(Xw)~Hr(Xv) is an isomorphism for r < k - 2. To show that it 
is also true for r --- k - 1, let us consider the following commutat ive  diagram: 
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Ilk-~(Xv, tX~) 

Hk-l(Xw, tXv) 
t 

J* 
Hk(Xv, Xw) ~' , Ilk_ ~(Xw) - -  Ilk_ ~(Xv) 

t t t -  
Hk(Xv, tX~) ~' , H k _ l ( X v )  ~3 , H k _ l ( X v )  

, 0  

) n k ( t X v )  --" n k ( X w )  --~ H k ( X w ,  t X v )  , 0 

, Hk(tXv) ~'~ Hk(Xv) ~ Hk(Xv, tXv) ,0  

According to the construction, Ck = ¢/2-l(im ~/1)" Since ~'4 is an epimorphism, 

W l( im ~1) = ~u2- l(im(q6 o q/4)) = ~{ l(im(~'2 o j , ) )  

= i m j ,  + im ~3 = i m j ,  + im( j ,  o i , )  = i m j , .  

This proves (b). 
Arguments similar to those of  Lemma 1.6 show that from conditions (a) and 

(b) it follows that the constructed manifold (W, to) satisfies all necessary 
conditions besides (IIIk). After application to (W, 09) of the construction of 

Lemma 1.6, we will receive another framed submanifold (Wi, 090 C M which 

satisfies all the conditions (I), (II), (ILL) and (IVr) for all r < k. 
The lemma is proved. 

5.8. PROOF OF LEMMA 1.8. Let us assume at first that B C C c t - lB .  It is 

clear that the factor group C/B is finitely generated over Z. Suppose that the 

classes of the elements c~, c2 . . . .  ~ cs E C generate C/B. Let us denote A~ = B, 

A~ = B + ( c t , . . . ,  c~), where i = 1, 2 . . . . .  N, and the symbol (ci , . . . ,  ci) 
denotes the subgroup generated by elements c~, c2 . . . . .  c~. It is clear that Afis a 

A+-lattice in H and A / C  A'+~ C t-~A ". Besides, the factor group A'+~/A" is 

~91 is an isomorphism, which implies that ~2 is an epimorphism. Besides, ~0a is 

a monomorphism (due to the condition (IIIk-0) and so (P4 = 0. From these, 

~05 = 0 follows and so j .  is an isomorphism for r = k - 1. 

To prove the statement (b) consider the commutative diagram with exact 

columns and rows 
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cyclic. Thus, if one puts Ai -- f A~ for i = 0, 1 . . . . .  N, then all conditions of  the 
lemma will be satisfied. 

Let us consider now the general case. From the fact that C generates H over 
A and is a A+-submodule, it follows that for any h ~ H t h e r e  is an integer a > 0 
with t~h ~ C. There exists a~ > 0 such that t~lB C C. Similarly, there is an 

integer a2 > 0  with t~2CCB. Thus, t ~ B C C c t - ~ 2 B .  Denote Ck= 
C n t~,-kB, where k = 0, 1 , . . . .  Then Co = t~'B and Ck coincides with C for 
sufficiently large k. From the relation Ck-~ C Ck C t-ICk_ ~ and the special 
case of  the lemma, proved above, it follows that we can construct a sequence of  

lattices, joining Ck-~ and Ck for some ak > 0 with required properties. 
Amalgamating these sequences in a chain, we shall get the statement of  the 
lemma. 
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