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ABSTRACT

It is proved that the Alexander modules determine the stable type of a knot up
to finite ambiguity. The proof uses a new existence theorem of minimal Seifert
surfaces for multidimensional knots of codimension two.

Introduction

In 1930 F. Frankl and L. Pontryagin [FP] proved that any polygonal simple
closed curve in three-dimensional space spans an orientable nonsingular
surface in R3. This statement served as the starting point for Seifert’s paper [S],
released three years later, which created a new method of studying algebraic
invariants of classical links. Seifert’s idea was to use the information, derived
from the imbedding in R? of the surface spanned by the link, to compute link
invariants, such as homology of the cyclic coverings. This made it possible to
apply homology methods in knot theory and, in particular, to explain the
homological meaning of many knot invariants known at that time.

Seifert’s method proved to be extraordinarily useful in multidimensional
knot theory as well. In 1965-1966 M. A. Kervaire [K4], E. C. Zeeman [Z] and
J. P. Levine [L1] showed that any (smooth) n-dimensional knot k" C $"*2
spans an orientable (n + 1)-dimensional submanifold ¥"*+! C §"*2 called a
Seifert manifold. The embedded surgery technique and the study of the
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homology pairing, determined by linking numbers of cycles of ¥ (the Seifert
pairing), were the main tools used to solve a number of fundamental problems
of mutlidimensional knot theory. In this way the unknotting criterion [L1], the
concordance classification of knots [L3] and the ambient isotopy classification
of simple knots [L4], [F3] were obtained.

The method used in the papers mentioned above consisted, essentially, in
the transformation of the Seifert manifold ¥ inside S" *2 in order to get another
Seifert manifold, having “simpler” homology structure. It is natural to ask if
there exist “simplest” or “minimal” Seifert manifolds? For the case of a fibred
knot the answer to this question is clear: a minimal Seifert manifold should be
the fibre of the corresponding fibering.

The present paper studies minimal Seifert manifolds of general multidimen-
sional knots. The formal definition of minimality is given in 2.4; it is
equivalent to the requirement that the inclusion of int Vinto the infinite cyclic
covering X induces a monomorphism in homology. This means the absence of
“superfluous” homology classes in ¥ any class in the kernel of H,, V—»H*)?
could potentially be killed by surgery, and thus ¥ can be made “smaller”. One
of the main theorems of the present paper (Theorem 2.3) states that any knot
(S"*2, k™) with m,(S"*?— k)= Z, n = 4, has a minimal Seifert manifold V,
and this V can be constructed to realize any previously given sequence of
lattices in the Alexander modules. In other words, the homology structure of a
minimal ¥ might be, to some extent, arbitrary; the only requirement is that it
should be compatible with the Alexander modules. This statement is a far-
reaching generalization of the well-known Levine’s theorem [L], which
provides r-connected Seifert manifolds. Another slightly more general state-
ment, which also follows from our Theorem 2.3, yields the following lacunary
principle: if the Alexander modules vanish in certain dimensions i; <i, <
-+ «+ <j;, then the knot admits a Seifert manifold without homology in
dimensions i, < i, < « - « <i;(cf. Corollary 2.7).

As the first application of the minimal Seifert manifolds theorem, I give here
a very short proof of the Trotter-Kearton theorem [Tr], [K3], saying that
simple odd-dimensional knots are equivalent if and only if they have con-
gruent Milnor forms. The second application is the knot finiteness theorem,
proved in Section 3. This theorem states that, modulo finiteness, the
stable type of a knot is determined by the Alexander modules up to the
middle dimension. A particular case of this statement was proved by
Haussmann [H1].

Theorem 2.3 on minimal Seifert manifolds is deduced in the paper from a
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certain general realization theorem for codimension-one submanifolds. As is
well known, any one-dimensional integer cohomology class can be realized by
a submanifold with trivial normal bundle [Th]. The question considered in
Section 1 of this paper is if it is possible to construct the minimal realizing
submanifold and describe the whole variety of such minimal submanifolds.
The answer is given by Theorem 1.5: minimal submanifolds correspond to
sequences of lattices in the homology modules of the covering space. This
statement constitutes, essentially, the main geometric part of the proof [F6] of
exactness of the Novikov inequalities [N1], [N2], estimating the number of
critical points of a map into the circle. Theorem 1.5 (or the theorem of [F6])
easily implies the theorem of Browder and Levine [BL] on fiberings over S’

An earlier version of the results of this paper was announced in the brief
note [F5].

In the sequel the exposition is organized as follows. The realization theorem
for codimension one submanifolds and its proof are given in Section 1; proofs
of some lemmas, used here, are placed in a separate Section 5 at the end of the
article. Section 2 gives the conceptual background and the formulation of the
theorem on minimal Seifert manifolds; here we also deduce some of its easy
corollaries. Section 3 is devoted to the applications: the Kearton~Trotter and
the knot finiteness theorem are proved here. The following Section 4 contains
auxiliary algebraic material used in the proof of Theorem 2.3; here the proof of
this theorem is also given. Among the results of this section I will mention a
new simple construction of the Milnor pairing, cf. [M].

We work in the smootH category.

I would like to thank Eva Bayer-Fluckiger for useful d1scuss1ons

§1. Realization theorem for codimension one submanifolds

In this section we will formulate a realization theorem for codimension
one submanifolds. The proof uses several lemmas, which will be proved in
Section 5.

1.1. Modules Defined by a Codimension One Submanifold. Let M" be a
compact connected manifold and (V" 1, v) its framed proper smooth sub-
manifold. Let us cut M along ¥™~! ([BL], 2.2); as a result we get a compact
manifold Y (with corners), in whose boundary two disjoint (n — 1)-dimen-
sional submanifolds V;, V; C dY are distinguished, and a quotient mapping
v : Y — M with the following properties:

(1) for m €M — V the preimage y ~!(m) consists of one point;
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(2) for m €V the preimage y ~'(m) consists of two points, one belonging to
V, and the other to V7, and

(3) w maps ¥, and ¥, homeomorphically onto V.

We shall assume that notations ¥, and V| are chosen so that the vector field
on V; corresponding to v under y is directed into Y.

Let a manifold X = X(V, v) be obtained from Y X N (where N is the set of
natural numbers with the discrete topology) by identifying points (v,, m) with
(v, m + 1) where mEN, y,EV,, 1K€V, and y(v) = y(v,). We denote by
q: X — M the unique projection mapping the class of a point (y, m)€EY X N
into w(y). The correspondence (y, m)—(y, m + 1) defines a continuous
mapping X — X which we shall denote by ¢. The group H,(X) becomes a A -
module, where A, = Z[t], if one puts tx = ¢,(x) for x € H(X). In this way a
sequence of A, -modules 4,(V, v) = H(X(V,v)),i=0,1,...,is defined.

1.2. Modules Defined by a Cohomology Class. Let EEH(M; Z) be an
indivisible cohomology class. Consider the covering p; : M; — M correspond-
ing to a subgroup in 7,(M) consisting of classes of loops « for which (¢, a) = 0.
The group of covering transformations of this covering is an infinite cyclic
group. Its generator ¢ : M; — M, can be fixed by requiring that for x €M, and
for any path @ in M, joining x with tx, the value of the class ¢ on the homology
class of the loop [p-w]Em (M) be equal + 1. The homology H,(M;) are
A-modules, where A= Z[t,t7]

1.3. The Embedding u: X(V,v)—M;. Suppose that in the situation of
Subsection 1.1 it is known that the manifold ¥”~! is connected and that the
cohomology class &= 60(V,v)EH'(M; Z), which is realized by the sub-
manifold (V, v), is nonzero.

Then the class & is indivisible (and therefore the arguments of the previous
subsection are applicable to it).

From the theory of covering spaces it easily follows that the map
q: X(V,v)— M, defined is 1.1, admits a lifting u : X(V, v)— M,, which is an
equivariant imbedding.

1.4. Let kK C K be two neotherian rings, and 4 be a finitely generated
K-module. A k-submodule S C A4 is called a k-lattice if it is finitely generated
(over k) and generates the module A4 over the ring XK.

Let us consider the map u,: 4,(V, v)— H,(M,), which is induced by the
map u: X(V,v)— M, from Subsection 1.3. It is easy to see that u, is a
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A ,-homomorphism and that B(V,v) =image(u,) is a A, -lattice of the
A-module H;(M;).

1.5. THEOREM (The Realization Theorem). Let n = 6, M" be a compact
connected manifold with n,M = Z, and EE H' (M, Z) be a generator. Let us
suppose that a framed smooth compact submanifold (F"~', v;) in OM is given
and for each i =2,3,...,n — 3 in the module H,(M;) some A .-lattice C; is
distinguished. It is assumed that the following conditions are satisfied:
@¢ |,,M = G(F, vy); (b) there exists a smooth fibering g : OM — S', realizing the
class & IaM, such that for some point s €S we have g~ '(s) = F. Then there exists
a compact simply connected smooth framed proper submanifold (V" =, v) in M
such that:

@ 6v,v)=4¢;

D V=F,v|r=w;
foreachi=2,3,...,n — 3 the following conditions hold:

(II1,) the homomorphism p,: A,(V, v)— H,(M,) is a monomorphism

(IV)) B,(V,v)=1t~C, for some integer a,EZ.

The proof (see 1.9 below) will be obtained by constructing a process of
improving manifold (¥, v), based on the following lemmas.

1.6. LEMMA. Suppose that under the conditions of Theorem 1.5 for some
integer k, 2 <k < n — 3, we have constructed a compact, simply connected,
smooth, framed, proper, submanifold (V*~,v) in M which satisfies the con-
ditions (1), (11) and also conditions (111;) and (IV,) for all i < k. Then there exists
a framed submanifold (W"~!, w) C M", which satisfies condition (111;) in
addition to the above conditions and moreover B, (W, ) = tB(V, v) for some
integer «,.

1.7. LEMMA. Suppose that under the assumptions of Theorem 1.5 for some
integer k, 2 <k = n — 3, we have constructed a compact, simply connected,
smooth framed, proper, submanifold (V*~',v) in M, satisfying (in the
notations of the Theorem 1.5) conditions (1), (II), (I1I;) for all i <k, and the
conditions (IV,) for all i <k — 1. Suppose also that tB,(V,v) C C, C Bi(V,v)
and the factor group C,/tB,(V, v) is cyclic. Then there exists a framed submani-
Jold (W™, w) C M", which, besides the conditions listed above, satisfies also
condition (IV,).

In the proof of Theorem 1.5 we shall also use the following purely algebraic
lemma.
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1.8. LemMA. Let H be a finitely generated A-module and let B, C C H be
two of its A, -lattices. Then there exist an integer a = 0 and a sequence of
A -lattices Ay, Ay, ..., Ay CH, such that Ay=B, Ay=1tC, for i=
0,1,2,...,N — 1 the following inclusions hold: tA; C A, ., C A; and the factor
groups A; . \/tA; are cyclic.

1.9. PrOOF oF THEOREM 1.5. Using the Pontryagin-Thom construction,
one may construct a proper, framed submanifold (V*~!, v) C M", satisfying
conditions (I) and (II) of Theorem 1.5 (see [BL], 2.1). As shown in Subsections
3.1 and 3.2 of [BL), under the conditions of Theorem 1.5 there exists a
submanifold (V"~!, v) which, besides the above listed conditions, is simply
connected (and, in particular, connected). This simply connected submanifold
will serve as the beginning of the inductive process.

By Lemma 1.6, we may assume that condition (III,) is also satisfied. By
Lemma 1.7 (combined with Lemma 1.8) we may suppose that condition (IV,)
is also satisfied. Then we may apply Lemma 1.6 again to get conditions (I), (IT),
(I1I), (I11,), and (IV,) and, applying Lemmas 1.7 and 1.8, we shall get a simply
connected, proper, framed submanifold of M", satisfying conditions (I), (II),
(IL), (IIL), (AV,), (IV;). Continuing this construction, we get the desired
submanifold (V" !, v).

This completes the proof. Lemmas 1.6, 1.7, 1.8 will be proved in §5.

§2. Minimal Seifert manifolds

Here we apply the realization Theorem 1.5 to the problem of constructing
minimal Seifert surfaces for multidimensional knots.

Before giving the statement of the theorem we recall some definitions and
known facts on the relationship between Alexander modules and the homology
of Seifert manifolds.

2.1. An n-dimensional knot is a pair (S"*2, k") consisting of the sphere
S"*2 and of an n-dimensional closed oriented submanifold k of it that is
homeomorphic (but not necessarily diffeomorphic) to the n-dimensional
sphere S". A Seifert manifold of a knot (S”*2, k") is any compact connected
orientable (n + 1)-dimensional submanifold ¥V C $*+2 with 9V = k.

Let K=(S"*% k") be an n-dimensional knot and X =S"*2—k is its
complement. The universal abelian cover p : X — X is the covering projection
corresponding to the commutator subgroup of #,(X). The group of covering
transformations of p is the Abelianized group n/[r,n]=H;X. By the
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Alexander duality theorem, H, X = Z; hence, the cover p: X— X has an
infinite cyclic group of covering transformations. The orientations of $" * and
k determine a generator : X — X of this group. ¢ acts on homology H, X,
making it into modules over the ring A = Z[¢, ¢ ~']. The module H; X is called
the i-dimensional Alexander module of K; we will denote it by 4,(K).

Kervaire [K4] has proved that the Alexander modules have the following
property: multiplication by 1 — ¢ €A is an automorphism of 4,(K). Using this
fact one can provide 4,(K) with a P =Z[z]-module structure by putting
za = (1 —t)~'a for a € H(X). A P-submodule S C 4,(K) is called P-lattice if
it is finitely generated over P and generate 4;(K) over A.

For n odd, n = 2¢g — 1, the Milnor form [M2]

[, 1:4,(K) X 4,(K)—~Q

is defined. If S C A,(K) is a lattice, then S* = {a €A,(K); [a, x]EZ} is
also a lattice (cf. Section 4) which is called the dual of S. A lattice S is self-
dual iff S = S*.

Any Seifert manifold V of K has a natural P-module structure on H (V) (see
[KS5), [F3, pp. 66-68]). The inclusion int ¥ — X may be lifted to X and any
such lifting f: int ¥ — X gives a map

fo: HV — A(K).

2.2. It was proved in [F3, pp. 76-80, 91-92] that (1) f, is a P-
homomorphism; (2) its image is a P-lattice in 4,(K); (3) the kernel of f, consists
of all elements vEH;V with (zz)"v=0 for some m =0 (here Z means
1 —z€P); (4) if nis odd, n = 2q — 1, then the middle dimensional P-lattice
im[f,: H,V—A/(V)] C A/(K) is self-dual.

The following theorem is the main result of this section.

2.3. THEOREM. Let K =(S"*%, k") be an n-dimensional knot with
n(S"*?*—k)=1Z, n = 4. Assume that for any r=2,...,q=[(n+1)/2] a
P-lattice S, C A,(K) is distinguished; in the case of odd n it is required that
the middle-dimensional lattice S, C A,(K) is self-dual. Then there exists a
simply-connected Seifert manifold V" +' C $"*2 of the knot K such that for all
r=2,...,q the P-module H,(V) is isomorphic to S,. Moreover, in the case of
odd n there exists an isomorphism @, : H,(V)— S, with the property:

[9,(11), 9, ()] = (vy, 1).

Here[ , ]denotes the Milnor form and { , ) means the intersection number
pairing on V.
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The proof of this theorem will be given in 4.11.

Now we would like to formulate some of its corollaries.

A P-module B will be called minimal if the multiplication by zZEP is a
monomorphism B — B.

2.4. LEMMA. Let V"*'C §"*2 be a Seifert manifold of a knot. The follow-
ing conditions are equivalent:

(a) the P-modules H(V) are minimal forallr =1,2,...,n;

(b) the P-modules H,(V) are minimal forallr =1,2,...,q =[(n +1)/2];

(c) themapsi,,i_:V—>S"t2—V, which are small shifts in the directions of
positive and negative normal vector fields, respectively, induce monomor-
phisms in homology;

(d) the maps f,: H(V)— A,(K), defined in 2.1, are monomorphisms for all
r=1,...,n;

(e) the multiplication by z€P is a monomorphism H,V—H,V for all
r=1,2,...,n.

The proof of the lemma will be given in 2.8. Seifert manifolds having one of
the equivalent properties (a)—(e) will be called minimal.

2.5. COROLLARY. Any n-dimensional knot, n = 4, having group Z, admits
a minimal Seifert manifold.

This automatically follows from Theorem 2.3, since the P-modules S,,
r=1,...,q,being submodules of the Alexander modules, are minimal and so
H, (V) are minimal forr=2,...,q.

As another corollary of Theorem 2.3 we obtain the following known result:

2.6. CorOLLARY (Levine [L1]). Any n-dimensional knot K = (S"*?, k")
with (S**?— k™) =n,(S") for i =r, n =4, admits an r-connected Seifert
manifold.

In this case the Alexander modules 4;(K) with i =1, 2, ..., r vanish.
The next statement is slightly more general.

2.7. COROLLARY. Assume that an n-dimensional knot K = (S"*2, k"), n =
4, having group Z, has the following lacunary property: for some set of numbers
I <ip< .-+ <ij=q=[(n+1)2] the Alexander modules vanish: A,(K)=0
Jors=1,...,1. Then the knot admits a Seifert surface V with H,(V)=0 for
s=12,...,1

It follows easily from 2.5.
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2.8. ProoF oF LEMMA 2.4. The equivalence (a) <= (c) follows easily from
the relations

i, =(@,—i)oz, —i_=(i,—i_)oz

(cf. [F3], pp. 67-68) and the fact that i, — i_ is a stable homotopy equivalence.
The equivalence (a) < (d) follows from [F3], Proposition 2.2.
To prove that (a) = (b), we consider two pairings:

< ’ ):Hr(V)XHn+l—r(V)_)Z’
{, }:TONXT,_,(V)—~Q/Z.

The first is the intersection form, and the second is the linking form. T;
means the Z-torsion subgroup of H;. We will use the following properties of
(,)and{, )

(1) (zZa,b) =(a, zzb) fora€H,(V),bEH, ,,_ (V)

(2) {zza, b} ={a,zzb} fora€T,(V), bET,_, (V)

(3) ifa€H,(V)and (a,b) =0forall bEH,,,_,(V) thena €T,(V),

4) ifa€T,(V)yand {a,b}=0forall bET,_,(V)thena =0.

Properties (3) and (4) are well-known, (1) follows from Proposition 1.2 of
[F3], and (2) may be proved similarly.

Now suppose that V" *!is a Seifert manifold with P-modules H,(¥) minimal
forr=1,...,q=[(n+1)/2]. Suppose a € H,(V) with zza =0, s > q. Then
forany b €EH, ,,_,(V), because of the minimality of H, , , _,(V), thereis N >0
with Nb = zzb, for some b,€H,,,_,(V). Thus,

(@, b) =§ (a, Nb) =§ (@, 22by)

1
= e— 7, ’b =0
(zZa, b,)

and so a € T, (V). Similarly, for any c €T, _,(V), because of the minimality of
H,_ (W), ¢ = zzc, for some ¢, €T, _,(V), and so

{a,c}={a, zz¢,} ={zZa, ¢} = 0.

Hence, a =0.

This proves (b)= (a) and the converse (a)= (b) is evident.

The implication (€)= (b) might be proved similarly; (a)= (e) is evident, and
the lemma follows.
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§3. Applications: the Kearton-Trotter theorem and the finiteness theorem

Here we present two applications of the realization Theorem 2.3. As the first
application we give a very short proof of the famous Kearton-Trotter theorem
[K2], [K3], [Tr], which asserts that simple odd-dimensional knots are equiva-
lent if and only if they have isomorphic Blanchfield or Milnor forms. Our proof
is based upon Theorem 2.3 and Lemma 3 of J. Levine’s paper [L4]. As the
second application, we prove the assertion announced in [F2], [F5] that, up to
a finite number of possibilities, stable knot type is determined by its dimen-
sion, the Alexander modules up to the middle dimension and the Blanchfield
(or Milnor) pairing on the Alexander module of the middle dimension. For
fibred knots this fact was established in [F1]. J. Haussmann [H1] has proved
this result is a particular case of knots having only one non-zero Alexander
module below the middle dimension.

The final version of our finiteness theorem (Theorem 3.6) uses algebraic
results of [BKW] and [BKW1]; it states that we could delete the Blanchfield
form from the collection of classifying invariants modulo finiteness in the odd-
dimensional case also.

An odd-dimensional knot K = (S**2, k"), n = 2q — 1, is called simple [L4],
if #,(S"*? — k) = Z and 4,(K) is the only non-zero Alexander module.

3.1. THEOREM ([K2], [Tr]). Assume n=2q—1, q =3, and K|, K, are
simple n-dimensional knots. Then K, is equivalent to K, if and only if there
exists a A-isomorphism f: A,(K,)—~ A(K) preserving the Milnor (or Blanch-
field) form.

The last condition means that for a, b €4,(X,)

[f(a), f(b)} =a, b],

where [ , ] denotes the Milnor form. In [Tr] (or [F3]) it is shown that Milnor
and Blanchfield forms mutually determine each other.

PRrROOF OF 3.1. Let V] be any minimal Seifert manifold of K,. Denote by
S; C 4,(K,) the P-lattice determined by ¥, via the construction described at
the end of 2.1. Assume that §, C 4,(K;) is the image of S, under some
isomorphism A4,(K,)—A4,(K;) preserving the Milnor form. By virtue of
Theorem 2.3, we may construct a Seifert manifold ¥, of K,, corresponding to
S,. Thus, we have P-isomorphism

H,(V)) < Hy (V)
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preserving the intersection numbers. Now V| and V, admit identical Seifert
matrices (because the Seifert pairing 6 might be expressed in the form
6(a ®b) = (a, zb) through multiplication by z € P and the intersection form)
and by Lemma 3 of [L4], V; and V, are ambient isotopic. So K, and K, are
equivalent. This proves the theorem.

3.2. We will say that n-dimensional knots K; and K, are homologically
equivalent (or have the same homology type) if there exist A-isomorphisms
[iA(K)—A(Ky), r=1,2,...,9=[(n+1)2]; in the case of odd n we
require that f, preserves the Milnor form. We will also use the notion of stable
equivalence: two knots are said to be stably equivalent if they become equiva-
lent after application of an iteration of the Bredon suspension; details may be
found in [B], [KN], [F7], [F8].

3.3. THEOREM. There exist only a finite number of n-dimensional knots
(for fixed n) which are all homologically equivalent but pairwise stably non-
equivalent. In other words, the Alexander modules A(K), . .., A,(K), where
q = [(n + 1)/2], together with the Milnor form A,(K) X A,(K)— Q (in the case
of odd n) determine the stable type of an n-dimensional knot up to a finite
ambiguity:

PrROOF. Assuming the contrary, suppose that there exists an infinite
sequence K|, K, . . . of n-dimensional knots which are all homology equivalent
and pairwise stably nonequivalent. Our arguments will consist of three steps.
In the first step we will show that we may assume all knots X, K,, . . . to be
stable. In the second stage we will prove that we may assume that all knots
K|, K,, . . . admit Seifert manifolds of the same stable homotopy type; here the
realization theorem 2.3 will be used. In the last stage, we will find a contradic-
tion, using a study of the group of self-homotopy equivalences and its action
on homology; this stage is very similar to the arguments in the fibred case [F1].
At this stage the general stable homotopy classification of knots [F3], [F4] will
be used.

The first stage is the easiest. Taking N > 0 sufficiently large, consider the
sequence

o™ (Ky), 0¥ (K)), . ..

where w denotes the Bredon suspension [B], [KN]. All knots in this sequence
are homology equivalent and pairwise stably nonequivalent. If N is large
enough, for instance 2N > n, then all knots @*¥(K;) are stable. So we will not
lose generality if we assume all knots in the initial sequence
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K, K,...

to be stable.
Denote g = [(n + 1)/2]. Let us distinguish a set of P-lattices D, C 4,(K}),
r=1,2,...,qinthe Alexander modules of K; in the case of » odd, we require
the middle dimensional lattice D, C A4,(K;) to be seif-dual. It is clear that it is
possible to do this; we are able, for example, to consider the set of P-lattices
determined by some minimal Seifert manifold of K;, whose existence is
guaranteed by Corollary 2.5.
Let
AK)—AK), r=12,...,q9, j=12,..

*

be the homomorphisms realizing the homology equivalence of knots K, and
K;. Denote by D/ the image of D, under this isomorphism.

By Theorem 2.3 applied to the system of lattices D/ CA4,(K)),
r=1,2,...,q, there exists a Seifert manifold V; of K; such that the P-

module H,(¥)) is isomorphic to D! forr =1,2,..., ¢, and the isomorphism
H,(V;)— D} takes the restriction of the Milnor form to the intersection form
onV,.

Thus, we have P-isomorphisms
pi HWV)—H(V), r=12...,q9, j=12,...
where in the case of odd n, n = 2q — 1, the homomorphism
pq Hy (V)= H, (V)
has the property
(9i(x), 2Py, = (X, ¥)w,>

for x,y€H,(V)), ( , )y, denoting the intersection form on V.
Define P-homomorphisms

{:Br(Vl)—’Br(V})) r=1: 2,...,72

(B, denoting the Betti group) in the following way: for r = ¢, y/ is just the
restriction of ¢/, and for r > g we define y/ by requiring the condition

(1) (WiC), wi(y)y, = (x,¥)v,

for x€B.(V}), yEB,._,(V)). By non-singularity of { , ) this condition
defines y/ uniquely. It is clear that y/ are P-isomorphisms and that (1) holds
forallr=1,2,...,n(not only for r > g).
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Manifolds V,, V,, . .. have isomorphic homology groups in all dimensions.
For r = g this follows from the existence of the isomorphisms ¢/, while for
r > q the group H,(V;) may be expressed as

Hom(Hn+l—r(Vj)9 Z)®EXt(Hn—r(Vj)9 Z)

(by Poincaré duality and the universal coefficients theorem), and now
n+l1-—-r=qg.

By Corollary 5.2 of [F1], in the sequence V), V,, ... there is an infinite
subsequence consisting of stably homotopy equivalent spaces. Thus, we are
able to assume that all spaces in the sequence V), V), . .. are stably homotopy
equivalent. For each j let us fix some S-equivalence #;: V' — V;, where V =V,
n, =id.

Let p; = (V}, u;, z;) be the stable isometry structure of V. The set

q =V, 4 (m®m), n" o z;om)

is the stable isometry structure isomorphic to p;. Theorem 3.3 will follow if we
can show that in the sequence

q, Q- ..

at least two stable isometry structures are isomorphic (in fact, if q; and q; are
isomorphic, then p; and p; are isomorphic and by Theorem 2.6 of [F4], K; and
K; are equivalent — the contradiction).

Let us consider the set S, of all stable isometry structures q = (¥, u, z) with
V =V, fixed. On this set the group G, = G*(V) of S-equivalences ¥ — V acts
from the left: for g € G, and qE.S, we put

ga=V,u-(g7'®g7"),gozog7").

Let us also consider the set S, whose elements are all collections
(p1,.--sPns by ..., 1,) where p,:B,—B,, r=1,2,...,n is a Z-homomor-
phism, B, = B,(V), and

LL:B,XB,, _,—Z, r=12,...,n

is a Z-bilinear form.
Consider also the left action of the group

G,= I Aut(B)

re=1
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on S,, which sends the pair, consisting of the sequence {g,}/., €EG,, & €
Aut(B,) and the collection (p,,..., pail,...,1,)ES,, into the element
(pis-- s prs iy .. ) ES; with

=gopog ', [=Lo(g ' Xgh-)

There is the natural map .S, —.S, which assigns to any stable isometry
structure q = (V, u, z) the collection (p,, ..., pp; 1y, ..., 1) with p,: B,—~ B,
being the homomorphism induced by z: ¥ — V,and with /,: B, X B, ,,_,—~Z
being the homomorphism induced by u: V® V—S§"+!. We also have the
natural map

G,— G,

sending any stable equivalence g: V' — V to the sequence

{gr}r- EGZ H AUt(B)
r=1
with g, : B, — B, being the map induced by g.
The constructed sets S, and S, with G, and G, actions, respectively, satisfy
all conditions of Proposition 5.4 of [F1]. (This follows from Propositions 5.1
and 5.3 of [F1].) By Proposition 5.4 we are able to state that the natural map

S]/Gl _’Sz/Gz

has the following property: the preimage of any finite set is finite.
The sequence of stable isometry structures

Q5% Q3. ..,

constructed above, defines a sequence of elements of S,, which lie in the
different orbits of the action of G,. Thus, we will get a contradiction if we
show that the elements of S, corresponding to q,, q,, . . . lie in the same orbit of
G,.

The collection

(p{’p£:~- -ap{;;l{s---ali)esb

corresponding to q;, can be defined by the following compositions:

("),
pi: B——*B(V) B(V)——*Bn

ﬂ.Xl

1B, X Byyror o BAV)X By sy n(V)—5 Z,
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for r=1,2,...,n. For any j=1,2,... let us define the collection
(g{, g3}, .-.,85)EG,in the following way:

. L i)~
gi . Br_“) B,(I/])——_" Br°

It is easy to verify that
glopleo(g)) '=z.=p;,
o)X (gher) D=1},

for r=1,2,...,n. This means that all collections (pi, pi,...,pi;
H,...,10),j=1,2,..., lie in the same orbit of G,.
The theorem follows.

The next statement is equivalent to Theorem 3.3 via results of [F7], [F8],
saying that for stable knots the notions of stable type and isotopy type
coincide.

3.4. THEOREM. For any fixed n = 5 there exist only a finite number of
stable n-dimensional knots, which are all homology equivalent but pairwise
nonequivalent .

3.5. Itis proved in [BKW], [BKW1] that on a given Alexander module there
exist only finitely many congruence classes of Blanchfield forms. Combining
this result with Theorem 3.4 we get the following statement, which may be
considered as the main result of this section.

3.6. THEOREM. The set of Alexander modules A, A,,...,A,, deter-
mines the type of a stable n-dimensional knot (n = 2q or n = 2q — 1) modulo
finiteness.

Another algebraic finiteness theorem of E. Bayer and F. Michel [BM] states
that there are finitely many isomorphism classes of Alexander modules with
given square-free Alexander polynomial. From this and from Theorem 3.6
there follows:

3.7. THEOREM. Given integer n and a set of square-free integral poly-
nomials A, A,, . . ., A,, where g = [(n + 1)/2], there exists only a finite number
of types of stable n-dimensional knots having A, as i-dimensional Alexander
polynomial fori =1,2,...,q4.



194 M. FARBER Isr. J. Math,

§4. Knot modules: lattices and duality

In this section auxiliary algebraic facts are presented, on which the proof of
Theorem 2.3 is based. Our main interest is in the study of the relations between
P- and A, -lattices of knot modules, in the light of the Milnor duality. In fact,
we deduce Theorem 2.3 from the general realization Theorem 1.5 by showing
that the sequence of A,-lattices in Alexander modules of all dimensions,
corresponding to a Seifert manifold, is completely determined by the
sequences of P-lattices in Alexander modules below the middle dimension,
and vice versa.

Recall some of our notations: A=Zt,¢t7'], A, =Z[t], A_=Z[t7Y],
L=2Zft,t ', (1—-1)""), P =Z[z). We consider Pas a subring in L, identifying
z with (1 — ¢)~'. We also may write L = Z[z, z~!, z~'] where z always means
1—z.

A module of type K [L5] is a finitely generated A-module A with the property
that the multiplication by 1 — ¢t €A is an automorphism 4 — 4. The Alex-
ander modules of knots of codimension two are of type X.

4.1. PROPOSITION. Let A be a module of type K and R CA be a P-
lattice. Then

(1) R is finitely generated as an abelian group;

(2) any element a €A can be represented in the form a = (zz) ~"b for some
beER, n=0;

(3) Tors; A CR;

(4) for any a €A there exists an integer N #+ 0 with Na €ER;

(5) the A -lattice A R, generated by R, coincides with

{aE€A; z"a €A for some n = 0};
(6) the A_-lattice A_R, generated by R, coincides with
{a€A; z"a €A for some n Z 0};

(N R=A,RNA_R;
(8) t*\A R Nt'A_R = z*27'R, where k and | are integers.

Proor. (1) It is well known [L5] that there exists an integer polynomial
A(t)EA, with A(1)=1and A4 =0. Let A(¢) be

A)=1+a(l =)+ --- +a(l — )%,

with o; €EZ. Define
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VE)=zF+a; 25 '+ -+« +a.

Then V(z)a =0 for all a€A. So, if elements a,,...,a,ER generate Ras a
P-module, then elements
e ,Q, 24y, ...,24;,...,25 1ay, ..., 25 g

generate R over Z. This proves (1).

(2) follows from the fact that the ring L is a localization of P over the
multiplicative set, consisting of powers (z2)*, n 2 0.

(3) The multiplication by zZ € P is a monomorphism R — R. By virtue of
(1) the group T = Torsz R is finite, and so the multiplication by zZ is an
isomorphism I'—T.

Assume a ETors; A. By (2), a = (z2) ~"bfor some b ER, n = 0. Since a is of
finite order, b is of finite order too, i.e., b € T. From the previous paragraph we
know that we may write b = (z2)"b, for some b, €ET. Then a =(z2)""b = b,
andsoa€T.

(4) By virtue of (1), there exists an integer N # 0 such that NR C (zZ)R. If
a€A,a=(zz)""b for some n =0, bER, then N"a €R.

(5) fa€A,Rande,..., e, ER generate R over Z, then

a=MAt)e + -+ i,(t)en,
where ,(1)EA,,i=1,2,...,m. Thus,
z"a =2"2()e, + - -+ + 22 ,()e,,

and for large enough n = 0 all z"4,(¢) might be written as polynomials in z
(since zt =z — 1). So, z"a ER.
Conversely, assume z"a €R. Then

a=z"(we+ - +unen), WEL,
and since
Z-" =(l _t)’l EA+,

we have a EA  R. (6) can be proved similarly.
(7) fa€A,R N A_R, then for large enough n = 0

Z"aER, Z"a&€R.
One can find an integral polynomial f{z) with the property
"fz) + 2°f(2) = |,
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for example

-1

=g (,* )ea-an

k=0
Thus
a=2z"f(z)a + z"f(2)a ER,
and so
A,RNA_RCR.

The reverse inclusion is evident.

(8) Suppose that X C 4 is a A,-submodule. There exists a polynomial
p()EA, with a=(1—-1¢)p(t)a for any a€A, so the multiplication by
1 —t is an isomorphism X — X. Since t = — (1 —¢)-Z, we conclude that
t*X =2"X,kEeZ.

Similarly, if Y C 4 is a A_-submodule, then 'Y =z"'Y,IEZ.

From these two statements it follows that

ALR=2z*A,R=2z* U z"R=U 2z (2R =A,(Z*z"'R).

n=0 n=0

Similarly,
t!A_R=A_(z*z2"'R),
and now statement (8) follows from (7).

4.2. REMARK. The arguments used in the proof of statement (1), also
prove that any module of type K contains at least one P-lattice.

4.3. Let us consider a module 4 of type K. A Z-homomorphism f: 4 —Q
will be called proper if it assumes integral values on some P-lattice R C A. The
set of all proper homomorphisms f: 4 —Q will be denoted by D(4).

We will consider D(4) as A-module, where for f€ D(4) the homomorphism
(tf)ED(4) is defined by the formula

(Na)=fit"'a), a€EA.

If f assumes integral values on R C A, then (¢f) assumes integral values on
tR C A, which is also a P-lattice.

4.4. ProrosITION. (1) For any module A of type K the module D(A) is also
of type K.
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(2) The canonical homomorphism
A—D(D(A))
is an epimorphism with kernel Torsz A.

ProOF. (1) Suppose R C A is a P-lattice. Any other P-lattice R, C A
contains (zZ)"R for some n = 0 (this follows from 4.1(2)), and so D(A4) can be
defined as the set of all Z-homomorphisms f: 4 — Q, assuming integral values
on (zz)"R for some n = 0.

Let R* be Hom,(R;Z). Any element of R* may be uniquely extended
(by virtue of 4.1(4)) to an element of D(A4). Thus we may consider R* as a
subset of D(A).

Formulas

(1 =) f)a) =l — 7 Na),
(1=t Na)=fA(1—-1a), a€A4,

show that the multiplication by 1 — €A is an automorphism of D(A). So
D(A) can be considered as L-module. In fact,

(zf)a)=Nza),  (2fNa) = flza)

for a €A4. Thus, from the above remarks it follows that for any f&€ D(4) there
exists n = 0 with (z2)"fER*, so f=(zZ) ~"f; for some f,ER*. Since R* is
finitely generated over Z, we conclude that D(4) is finitely generated over A.
Hence, D(4) is 2 module of type K and R* is a P-lattice.

(2) Itisclear that Tors; A is contained in the kernel of 4 — D(D(4)). Ifa €4
is an element of infinite order, then for some N > 0, Na belongs to R and so
there exists f€ R* with f(a) # 0; thus the kernel of 4 — D(D(A)) is Torsz A.
From the commutative diagram

R— R**
A—D(D(4))

we see that, given y € D(D(A4)), we can find #n = 0 with (z2)"y € R** and then
realize (zZ)"y by some r-€R. Thus, (zZ) "r €A is mapped onto y, and so
A — D(D(A)) is onto.

4.5. Let A and B be modules of type K. A duality pairing is a Z-bilinear map
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[,]1:4XB—=Q

satisfying:

(1) [ta,th]=][a,b] foralla€A4, bEB;

(2) the associated map A —Homy(B; Q) has kernel Tors; A and image
D(B).

Thus, the duality pairing defines a A-epimorphism

A—D(B)

with kernel Tors, A. From Proposition 4.4 it follows that the other associated
map
B—Hom;(4; Q)

is onto D(A4) with kernel Torsz B.

4.6. PROPOSITION. Let[ , ]:AXB—Qbea duality pairing. Then
(1) for any P-lattice R C A the set

R* ={b€EB;[r,b]EL for any r ER}

is a P-lattice in B;

(2) R** =R;

(3) if R,R,C A are two P-lattices, then A, R,=A.R, if and only if
A_(RF)Y=A_R});, similarly, A_LR,=A_R, if and only if A, (Rf)=
AL (RY).

ProoF. (1) R* is the preimage of R* (introduced in the proof of Pro-
position 4.4) under the map

B —D(4).

Statement (1) now follows from Proposition 4.4 and the fact that R* C D(4) is
a P-lattice.

(2) may be proved similarly.

(3) According to Proposition 4.1(5), the equality A, R, = A, R, takes place
if and only if z"R, C R, and z™R, C R, for some n =z 0, m = 0. But in general,

Z*R* = (z"*R)*, zFR* =(z"'R)*,

where R is a P-lattice, R C A, and kis an integer. Thus, the inclusion z"R, C R,
gives

Rf Cc(z’R)*=z""Rf, z"Rf CR{
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and similarly
Z"R¥ C Rf.
Applying 4.1(6) we get
A_(R¥#)=A_(R}).
The other statement can be proved similarly.
4.7. PROPOSITION. Suppose A is a module of type K and
[,]1:4XA—Q

is an e-symmetric duality pairing, ¢ = £ 1. Then A contains a self-dual
P-lattice, R = R*.

PrOOF. Let R C A be an arbitrary P-lattice. By virtue of the identity
((z2)""R)* = (z2)"R*,
for sufficiently large n we will have
((z2)""R)* CR C(zZ) "R.
Thus, we are able to assume that
R*CR

(if this is not true take (zZ) "R instead of R).

Assuming R* C R, consider the set

S = {rER; z"r ER* for some n = 0}.

S is a P-lattice in .S. We will show that S is self-dual.
Suppose r,, ,ES and z"r,, z"r,ER*. There exists an integral polynomial
f(z) with the property

1=2"z) + 2°f(2)
(constructed in the proof of statement 4.1(7)). Now,
r,=z"f(2)r, + 2"f(2)r,, v=12
and so
[r, 1] = [2"(2)ry, 2*M(2)r) + [2°f(2)ry, 2°f(2)rs)
+ [2(2)r,, 2"'[2)r) + [2°f(2)r, 2(2)r).
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Since z"r,ER¥*, the three first summands are integral. But the fourth
summand is equal to [z"f(z)r,, z2"f(z)r,] and so it is also integral. This proves
S*cS.

For some n >0 the lattice (zZ)"R is contained in R*. Thus, for rER,
Zz"r€S. If r,€S*, then [r,, 2"r] = [z"r,, r] is an integer for any r ER, and so
z"r,€R* and r,€S. This proves S* C S.

4.8. DEFINITION. Let R be a P-module. A submodule T C R is basic if

(a) T contains (zz)*R for some k = 0;

(b) if rER and NrE€T for some N # 0, then r €T

(c) the kernel of the homomorphism 7 - T given by multiplication by
zZ € P is contained in Tors; 7.

It was shown in [F3], 6.2, that every P-module finitely generated over Z hasa
unique basic submodule.

Assume R is a P-module finitely generated over Z with no Z-torsion. Let T
be its basic submodule and let M C R be the set

{r €R; (z2)*r = 0 for some k = 0}.
Then it is clear that
R=TOM.

In the general case, if we would not have assumed that R has no Z-torsion, then
R =T+ Mand T N M is equal to the torsion subgroup of R.

4.9. Now we are going to apply the algebraic notions of this section to the
geometry.

Let K = (S"*% k") be a knot, X = §"+2 — k its complement and p: X = X
the infinite cyclic cover. Any Seifert manifold ¥ C $”+2 of K admits a lifting
f+int ¥V — X and the image of the induced map

S HV—~H X =4(K)

is a P-lattice, which will be denoted by P;( f).
On the other hand, a Seifert manifold has an obvious framing v, and the
lifting f: int ¥ — X defines also a lifting
wXw,v)—X,

the manifold X(V, v) having been constructed in 1.1. The image of the induced
map
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te: Hi(X(V,v)—X
is a A, -lattice in X, which will be denoted by A, ;( f).
4.10. PROPOSITION. There exists a bilinear map (the Milnor pairing)
[, 1 HX) X Hyp (D)~ Q,

having the following properties:
(1) ifa€H;(V)and bEH, . ,_;(V) belong to the corresponding basic submo-
dules of H,V and H, . _(V), then

[f*(a), f(*b)] = (a, b>,

where ( , ) denotes the intersection number;
(2) [ , 1is a duality pairing in the sense of 4.5;
(3) P-lattices P,(f) and P, ,,_;(f) are dual to each other,
(4) the lattice A, ,(f) coincides with the A ,-lattice, generated by P( f).

Proor. First we will construct [ , ]; basically, property (1) will be taken as
the definition.

Let x€EH, X, yEH,,,_;X. According to Lemma 6.3 of [F3], there exist
elements a €H,Vand b€ H, , ,_,(V), belonging to the basic submodules, and
integers N # 0, M # 0, such that

Nx =f*(a)a My =f*(b)

["[’J] (a’l)EQ‘
NM

The correctness of this definition follows from Lemma 6.3 of [F3].
Property (1) is obviously satisfied.
To prove (2), note that Proposition 1.2 of [F3] implies

[ta, tb] = a, b]
foralla,b€EH, X. Consider the associated map
Hi/‘;_i{') Hom, (H, +|—i(X); Q);

we have the following commutative diagram:



202 M. FARBER Isr. J. Math.

BH,V—" Hom(BH, ,,_«(V); Z)

n

HV ’

{

HiX_a—ss“’ Hom(Hn+l—i(/\7); Q).

Here § means the operation of taking the basic submodule, ass, is the map
associated with the pairing

(, W:BH,V XBH, (;(V)—Z

which is the restriction of the intersection form ( , ), and the map ¢ acts as
follows: given g:B8H,, _;(V)—Z, consider fH,,,_;V as embedded in
H,.,_(X), then Lemma 6.3 of [F3] says that g admits a unique extension
g:H,  _(X)—Q and we set § =¢(g). Commutativity of this diagram
follows from the definitions. The vertical map on the right is a mono-
morphism, the vertical map on the left has the torsion subgroup as its
kernel (see 6.3 of [F3]). Thus, the kernel of ass coincides with the torsion
subgroup.

It is clear that the image of ass lies in the set of proper homomorphisms,
D(H, ,,_:(X)). To prove that the image of ass coincides with D(H, , ,_;(X)), it
is enough to show that

( s )l:ﬂHiVXﬂH,H.]_i(V)_’Z
induces an epimorphism
BH;V —Hom(BH, ,-,(V); Z).

To do this, suppose we are given g: gH, . _(V)—Z. Since BH,.,_(V)is a
pure subgroup, g may be extended to a homomorphism

g H, . i(V)—L

We shall consider the unique extension g satisfying g(b)=0 for all bE
tH, ;,_;(V), where

tH, . i (V)={b€H,,,_i(V);(22)"b = 0 for some n = 0}.

By virtue of the Poincaré duality, there exists a €EH; V with (a, b) = g(b)
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for all bEH,,,_ (V). Write a =a, + a,, where a,€EBH(V), a,ETH(V).
From the equalities

(ala THn+l—i(V)) = 01 (aZ, ﬂHn+l—i(V)> = 0

it follows that
(@, b) = g(b)
forall b EH, ,,_;(V) and, thus,
ass\(a)=g.

This completes the proof of (2).
(3) follows from the arguments described immediately above and from the
remark that

P(f)=im[f,: ﬂHi(V)"’HiX]-

(4) might be proved by the standard arguments used in the proof of
Proposition 2.2 in [F3].

4.11. ProoF oF THEOREM 2.3. Suppose that all conditions of the theorem
are satisfied. Lattices S, C H, X are given just for r < ¢ = [(n + 1)/2]. Define
S, C H,X for r > qtobe(S,,,_,)* — the lattice dual to S, ,_, relative to the
Milnor form. Let C,=A.S,, r=1,2,...,n; in other words, C, is the
A | -lattice, generated by S,.

The realization Theorem 1.5, after having been applied to the manifold
(S”*2 — small tubular neighbourhood of the knot k), gives a Seifert manifold
yr+l C §7+2 of K with the properties:

(a) Vis simply connected;

(b) it is minimal in the sense of 2.5;

(¢) for some lifting f: int ¥ — X, where X is the infinite cyclic covering of

the complement X = $"*2— k,wehave A, (f)=t*C,,r=1,2,...,n,
a, is an integer. Here we use notations introduced in 4.9.

Let D, denote P,( f). D, is a P-lattice in H, X and A , D, = tC, (because of (c)

and statement (4) of 4.10). From part (4) of 4.10 we know that

Dr = (Dn+l—r)#a

and thus foranyr=1,2,..., g we have
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A,.D,=1%A,S,,
A.D}? =t A,SF.
Ifweputa =«,, b =a,,,_,, then the second equality can be rewritten as
A.DF = A, (557) = A . (15S,)*.
Using 4.6(3) we get
A D, =A_(8S,)=1°A_S"
and
D,=A,D,NA_D,
=1°A.S, NPA_S,
= 292788, = z%z %08,

where we have used 4.1(7) and 4.1(8).
Thus, we have proved that the map

zooztnf HV—HX

provides a monomorphism with image S,. If nisodd, n =2¢ — 1,and r =g,
then this homomorphism is equal to ( — ¢) ~% f, which clearly takes the Milnor
form to the intersection form of V (by virtue of 4.10(1)).

This completes the proof.

§5. Proofs of Lemmas 1.6, 1.7 and 1.8

The proofs of Lemmas 1.6 and 1.7 will in turn use Lemmas 5.1 and 5.2,
which are stated below.

In Lemmas 5.1 and 5.2 it is assumed that a smooth, compact, #n-dimensional
manifold Y is given and two submanifolds, V;, ¥V, C dY are distinguished. It is
also supposed that n = 6, the manifolds V,, V,, Y are simply connected and the
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cobordism on the boundary §Y =cl(@Y — (V, U V})) between 8V, and 8V is
trivial (Fig. 1).

i

&Y

- -

Fig. 1.

5.1. LEMMA. For any k =n — 3 there exists a smooth simply connected
(n — 1)-dimensional submanifold W C Y with OW = W N 3Y = 3V, such that
Y — W consists of two components, and for the component N, containing V,
(cf. Fig. 2), the following is true:

Vo

Fig. 2.

(1) the induced by inclusion homomorphism H{(N, V)~ H{(Y,V)) is an
isomorphism for all i <k — 1 and is an epimorphism fori =k + 1;
(2) fori =k and fori >k + 1 the group H(N, V) is trivial.

5.2. LEMMA. For any k =n —3 and for any class z€EH/(Y, V,) there
exists a smooth simply connected (n — 1)-dimensional submanifold W C Y
withdW = W N 8Y = 8V, such that Y — W consists of two components and for
the component N, containing V,, the following is true:
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(1) the homomorphism induced by inclusion H(N, V)~ H{(Y, V}) is an
isomorphism fori =k — 1,

(2) the group H,(N, V) is isomorphic to Z and the class z is the image of its
generator under the homomorphism H, (N, V)~ H/(Y, V});

(3) the group H(N, V)) is trivial for i > k.

5.3. In the proofs of Lemmas 5.1 and 5.2 we shall use the following well
known fact: if an (n — 1)-dimensional manifold W is obtained from another
(n — 1)-dimensional ¥ by a spherical modification of index i, where 2 <i =
n — 3, then W is also simply connected.

5.4. ProoF oF LEMMA 5.1. According to Smale’s theorem ([M1], th. 6.1)
there exists a Morse function f: Y — [0, 1], which is equal to 0 on V] and 1
on ¥V, and such that for each j, 0 =j = n, the number of critical points of
f of index j is equal to b, +¢; +¢q;_,, where b, is the rank of the
group Hi(Y,V)), and g; is the minimal number of generators of its
torsion subgroup. Moreover, the restriction of fon the boundary cobordism
oY =cl(dY — (V, U V})) has no critical points. The function f gives rise
to a handle decomposition of Y, with the handles glued in the order of
indices to a collar of V| in Y. It is clear that b, = 0, ¢, = 0. By the Poincaré
duality,

H, (Y, V)= H\Y, V)

and
H,_\Y, V)= HXY, V;) = Hom(H(Y, V); Z).

These imply that b, =b,_, =0 and ¢, = g,_, = g,_, =0 and it follows that
the function f has no critical points of indices 0, 1, n — 1, n.

Let Y’ be obtained as the result of gluing of all handles of indices =<k — 1.
We may suppose that Y is contained in Y’.

Let 2 =j = n — 2. In the group C; of the chain complex, generated by f, we
may choose the following base,

i,z ... 25, B, .. B,

where u = b; + q;, ¢ = g;_,, the elements z{ form a base in the group of
Jj-dimensional cycles Z;, and the boundaries of the elements #/ form a base
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in the group B;_; of (j — 1)-dimensional boundaries. By Theorem 7.6 of
[M1], we may assume that this base realizes the j-dimensional handles of Y.
We shall denote by H the handle realized by z7 and denote by 4/ the handle
realizing 8.

Let us suppose that the construction of the previous paragraph has been
performed forj=kandj =k + 1.

Since the handle Hf*! realizes a cycle, the intersection numbers of its
attaching k-dimensional a-sphere with the f-spheres of handles of index
k are all equal to zero. Thus using the Whitney lemma ([M], th. 6.6), we
may isotope handles H*' such that they do not intersect handles of
index k.

Assuming handles H**! do not intersect handles of index k, consider the
submanifold N C Y, which is the union

YURfURSU -+« URL  UHIT U ... UHKY]

He+y °

It is clear that the homomorphism H;(N, V)= H(Y, V}) induced by the
inclusion is an isomorphism for j < k — 1 and an epimorphism forj =k + 1.
Besides, H;(N, V,)=0forj=kandj>k + 1.

The boundary of the constructed N satisfies IN N Y =3Y —int V;. Let us
denote W =cl(6N Nint Y).

The lemma will follow if we prove that W is simply connected. For
k+1=n-—3 it is a consequence of the remark 53. If k+1=n -2,
then, using the dual handle decomposition, we may note that W is
obtained from ¥V, by a surgery of indices 2 and 3. And now we may use the
remark 5.3 once more, due to the assumptions: # = 6 and V; is simply
connected.

The lemma follows.

5.5. ProOF OF LEMMA 5.2. Let us consider the exact Morse function
f: Y—[0, 1] and the induced handle decomposition on handles of the form H¥
and h¥ similar to the proof of Lemma 5.1.

Let Y’ C Y be the union of all handles of indices <k — 1 and also of
the handles A%, A, . .., h%_ . We shall suppose that Y’ contains dY — int V.
It is clear that H;(Y’, V)= 0 for j = k and the inclusion (Y’, V})—(Y, V})
induces an isomorphism H;(Y’, V)~ Hi(Y,V)) for j=k—1. Let Q=
Y—int Y and U=Q N Y, cf. Fig. 3.
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.

YI

4

Fig. 3.

For all i we have H,(Q, U)= H/(Y, Y’) and from the exact sequence
= H(Y, V)= H(Y, V)=~ H(Y,Y)—>---

we find: H;(Y, Y’) = 0fori < k — 1 and the inclusion induces an isomorphism
H (Y, V)=H(Y, Y).

Thus, H(Q,U)=0 for i =k — 1 and the group H, (@, U) is naturally
isomorphic to Hi (Y, V)). Let z’€H,(Q, U) be the image of z under this
isomorphism. The pair (Q, U) is (k — 1)-connected (by virtue of remark 5.3)
and applying Corollary 1.1 from [H2] we get an embeddeding D* — Q with
D* N 3Q = D* N U = S*~!, realizing z’. Let N be the union of Y’ and a tubular
neighbourhood of D* in Q.

Consider the following diagram, where all homomorphisms are induced by
inclusions:

Hy(N, V) —2 H,(Y, V)

Hy(Y', V)

If j = k — 1 then y is an isomorphism. On the other hand, « is an isomor-
phism for j = k — 2 since H;(N, Y") = H;(D*, dD*). Considering the following
diagram:
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0~ H(Y, V) > Hi(Y, Y) > H_(Y', V) % H,_(Y,V})—~0

0= H (N, V) = H(N, Y) = H,_(Y', V}) = H, (N, V})—~0

one may deduce that « is an isomorphism for j = k — 1 as well.

Thus, we have proved that for j < k — 1 both a and y are isomorphisms. So
for these values of j, £ is an isomorphism too.

From the above diagram it follows that the homomorphisms o : H (Y, V;)—
H(Y,Y)and x: H.(N, V)~ H/(N, Y’) are isomorphisms, Since the group
H(N, Y’} is evidently isomorphic to Z, then also H, (N, V’)= Z. Since the
image of z under ¢ coincides with the image of a generator of H,(N, Y’) under
v, the homomorphism f:H,(N, V)= HJ(Y,V,) maps a generator of
H,.(N, V) into z.

We now have only to denote W =cl(@N Nint Y); W is simply connected
{by arguments similar to those in the proof of Lemma 5.1).

The lemma is proved.

5.6. PROOF OF LEMMA 1.6. Let 2=k =n—3 and let ()" ',v) be a
simply connected, proper, frame submanifold in M", satisfying conditions
(M), I, JIL), (IV;) of Theorem 1.5 for all i <k. Let the cobordism
(Y: V, V,) be obtained by cutting of M along V and let y: Y —M be
the natural map (cf. 1.1). Apply Lemma 5.1 to the cobordism (Y; Vy, V))
and to the number k. The submanifold W”~! C Y which is given by this lemma
has a framing w, with the vectors of w directed inside the component N
of the complement Y — W con- taining V,. The image of (W"~!, w) under
v is a frame submanifold of M, satisfying conditions (I) and (II) of
Theorem 1.5; we shall identify it with (W"~! w) and denote it by the
same symbol.

Suppose that the manifolds X, = X(V"~!,v) and Xy = X(W"~!, w) are
constructed as explained in 1.1. There are natural inclusions tX, C X, C Xy,
and the induced homomorphism H,(Xy,tX,)—H(X,,tX,) is an
isomorphism for r =k — 1 and is an epimorphism for r =k + 1, the group
H (X, tX),) being trivial for r = k and for r = k + 1. This follows from the
commutative diagram
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H,(Xw, tXy) — H,(Xy, tXy)

Hr(Na Vl) - Hr(Ya Vl)

whose vertical isomorphisms are excision isomorphisms and whose lower
horizontal homomorphism satisfies conditions (1) and (2) of Lemma 5.1.

We shall later show that (a) the homomorphism j, : H,(Xy)— H,(X},) is an
isomorphism for r = k — 1 and (b) the homomorphism i,.: H,(tXy) = H.(Xw)
is an epimorphism and its kernel coincides with the kernel of the homomor-
phism H,(tX,)— H.(X,), induced by the inclusion. Let us complete the proof
of the lemma supposing (a) and (b) true. By virtue of (a), the homomorphism
Uy A, (W™, w)— H,(M;) is a monomorphism and its image coincides with
B, (V"= v) for r <k. In other words, (W"~!, w) satisfies conditions (III,) and
(IV,) for r < k. By virtue of (b) B,(W"~!, w) = tB(V"*~', v) and now we shall
show that the kernel P of the homomorphism g, : 4, (W"~!, w)— H,(M,) is in
some sense smaller than the kernel Q of the homomorphism u, : 4, (V" !, v)—
H,(M;). In fact,

P={a€A MW", w),Im=0,t"a =0},
Q={a€4,(V"",v); Am =0, t"a =0},

and so the restriction of {, maps Q onto P and the kernel of the restriction i, |,
coincides with {g €Q; tg = 0}. Thus, P is isomorphic to

Q/{q€Q;1q =0}

and now it is clear in which sense P is less that Q (note that A4,(V"~!, v) and
A (W1 w) are finitely generated over A, and so P and Q are finitely
generated over Z).

Let us iterate the construction, which we have applied to V'in order to obtain
W. As a result we shall get a sequence (W’ ! w,), where s =1,2,... of
framed submanifolds with (W,, w,)=(W""!, w), satisfying (I), (II), (II1,),
av,) forr =k —1 and B.(W? !, w,) = *B.(V"~!, v). Besides, the kernel of
the homomorphism

oy AW, )~ H (M)
is isomorphic to

Q/{q€Q; t°'q=0}.
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It is clear that for sufficiently large s this group is trivial and so condition
(I11,) is satisfied.

To complete the proof we have only to prove statements (a) and (b). From
the exact homology sequence of the triple (X,, Xy, tX}), using the fact that
H.(Xw,tXy)—H(Xy, tX,) is an isomorphism for r =k — 1, we obtain
H,(Xy,Xy)=0 for r =k —1 and from this it follows that j,: H,(Xy)—
H.(X,) is an isomorphism for r <k — 2. To show that it is also true for
r =k — 1 consider the following commutative diagram with exact columns
and rows:

H,_(Xy, tXy)
~ T¢|
Hk—l(XW, tXV)

Js
H(Xy, Xp) —— Hi_(Xy)— H_(X,)— 0

~ T 9,
H (X, tX,)—> H,_(tXy) —> H(Xy)
t
0

The homomorphism ¢, is an isomorphism (see the beginning of the proof),
and so ¢, is also an isomorphism. By virtue of the assumptions of the lemma,
(II1, _,) is satisfied and so ¢ is a monomorphism, and so ¢; = 0 and also ¢, = 0.
This proves that j, is mono.

J« 18 also onto; this follows from the equality H, (X, Xy) = 0 which was
obtained above.

To prove (b) consider the diagram

Hy o (X, X)) =2 H(tX)) — Hi(Xy)— 0
I I -
Hy o (Xy, tXy) — Hi(tXy) —> H(X,)— 0

Due to the fact that y; is an epimorphism (see the beginning of the proof),
we find

ker(y,) = im(y,) = im(y, ° y3) = im(y,) = ker(i,,),
which proves (b) and the lemma follows.

5.7. ProoF OF LEMMA 1.7. Let2=k=n—3 and (F""L,v)CM" be a
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simply connected proper framed submanifold, satisfying (in the notation of
Theorem 1.5) conditions (I), (I), (II1,) for r <k and (IV,) for r =k — 1.
Suppose also that 1B, (V, v) C C; C B(V, v) and the factor group C,/tBi(V, v)
is cyclic, generated by some bEB(V,v)tBi(V,v). Let the cobordism
(Y; V,, V)) be obtained by cutting M along ¥ and y : y — M be the natural map
(see 1.1). Due to conditions (III, _,) and (I11;), the group B, (V, v)/tBi(V, v) is
isomorphic to H,(Xy, tXy); let z € H (X, tXy) denote the image of b under the
evident isomorphism (here X, = X(V, v) is the manifold of the subsection
1.1). By the excision axiom H (X, tX,) = H,(Y, V}) and let z’€ H, (Y, V}) be
the image of z.

Apply Lemma 5.2 to the cobordism (Y; ¥}, ¥}), the number k and the class
z’. The submanifold W™ ! C y, which is given by this lemma, has a framing @,
whose vectors are directed into the interior of the component of ¥ — W,
containing ¥, which we denote by N. The image of (W, w) under y is a framed
submanifold in M, satisfying (I), (II) of Theorem 1.5; we will identify it by
(W"=1, w) and denote it by the same symbol.

Let X,y = X(W, ) be built as in 1.1. There are inclusions

tXV—i' Xw— Xy,

and conditions (1), (2), (3) of Lemma 5.2 imply that the homomorphism
induced by the inclusion

H,(Xw, tXy)— H,(Xy, tXy)

is an isomorphism for r < k — 1. Besides, the group H,(Xy, tXy) is trivial for
r >k, and it is Z for r = k; moreover, for r = k the image of a generator of
H(Xw, tXy) in H(Xy, tXy)is z.

Let us show that (a) the homomorphism

Jat H/(Xw)— H,(Xy)

is an isomorphism for r < k — 1, and (b) for r = k its image coincides with
Ci C Hi(Xy).

In fact, similarly to the proof of Lemma 1.6, H,(Xy, Xy)=0forr =k —1
and so j, : H,(Xy)— H,(X,) is an isomorphism for 7 < k — 2. To show that it
is also true for r = k — 1, let us consider the following commutative diagram:
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Hy_(Xy, tXy)
~ T"'
He_(Xy, tXy)
T .
Ju
Hi(Xy, Xy) =2 He_(Xw) — Hi—(Xy) — 0
to t t-

H(Xy, tX,) —> H,_(Xy) — H,_(Xy)

¢, is an isomorphism, which implies that ¢, is an epimorphism. Besides, ¢, is
a monomorphism (due to the condition (IIL, _,)) and so ¢, = 0. From these,
s = 0 follows and so j, is an isomorphism for r =k — 1.

To prove the statement (b) consider the commutative diagram with exact
columns and rows

0— H(tXy) — H(Xyp) = H(Xp, tX,)— 0
V- l Iw
0— H(tXy) = H(Xy) 2 H(X,, tX,)— 0

According to the construction, C; = y; '(im y,). Since y, is an epimorphism,

wy '(im y,) = y; {im(y, 0 ) = w; {(im(y, )
=imj, +imy;=1imj, +im(j,°i,)=1mj,.

This proves (b).

Arguments similar to those of Lemma 1.6 show that from conditions (a) and
(b) it follows that the constructed manifold (W, @) satisfies all necessary
conditions besides (III,). After application to (W, w) of the construction of
Lemma 1.6, we will receive another framed submanifold (W, w,) C M which
satisfies all the conditions (I), (II), (IIL,) and (IV,) for all r = k.

The lemma is proved.

5.8. PROOF OF LEMMA 1.8. Let us assume at first that B C C C ¢~ !B. Itis
clear that the factor group C/B is finitely generated over Z. Suppose that the
classes of the elements ¢,, ¢;, . . . , ¢y € C generate C/B. Let us denote A;= B,
A!=B+(,...,c;), where i=1,2,...,N, and the symbol (c,...,¢)
denotes the subgroup generated by elements ¢, ¢,, . . ., ¢;. It is clear that A/is a
A -lattice in H and A/ C A}, Ct™'A}. Besides, the factor group A!,,/A! is
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cyclic. Thus, if one puts 4; = t'A/fori =0, 1, ..., N, then all conditions of the
lemma will be satisfied.

Let us consider now the general case. From the fact that C generates H over
A andisa A, -submodule, it follows that for any # € H there is an integera = 0
with t*h € C. There exists a; = 0 such that (B C C. Similarly, there is an
integer «,=0 with t=C CB. Thus, t*BC CCt =B, Denote C,=
CNtv~*B, where k =0, 1,... . Then C,= B and C, coincides with C for
sufficiently large k. From the relation C,_, C C, C¢7'C,_, and the special
case of the lemma, proved above, it follows that we can construct a sequence of
lattices, joining C,_, and C, for some o, =0 with required properties.
Amalgamating these sequences in a chain, we shall get the statement of the
lemma.
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